{"title":"Asymptotic Behavior of the Bergman Metric at Infinite Type Points","authors":"Ravi Shankar Jaiswal","doi":"10.1112/blms.70100","DOIUrl":"10.1112/blms.70100","url":null,"abstract":"<p>We investigate nontangential asymptotic limits of the Bergman kernel on the diagonal, and the Bergman metric and its holomorphic sectional curvature at exponentially flat infinite-type boundary points of smooth bounded pseudoconvex domains in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$mathbb {C}^{n + 1}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>∈</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$n in mathbb {N}$</annotation>\u0000 </semantics></math>. After showing that these objects satisfy the appropriate localizations, we apply the method of scaling to prove our results.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2372-2394"},"PeriodicalIF":0.9,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144815214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eigenvalue estimate for the \u0000 \u0000 p\u0000 $p$\u0000 -Laplace operator on a connected finite graph","authors":"Lin Feng Wang","doi":"10.1112/blms.70104","DOIUrl":"10.1112/blms.70104","url":null,"abstract":"<p>In this paper, we consider eigenvalue estimate for the <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Laplace operator <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>▵</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$triangle _p$</annotation>\u0000 </semantics></math> on a connected finite graph with the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>CD</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathrm{CD}_p(m,0)$</annotation>\u0000 </semantics></math> condition for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>></mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$p>1$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>></mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$m>0$</annotation>\u0000 </semantics></math>. We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>▵</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$triangle _p$</annotation>\u0000 </semantics></math>, which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the <span></span><math>\u0000 <semantics>\u0000 <mi>μ</mi>\u0000 <annotation>$mu$</annotation>\u0000 </semantics></math>-Laplace operator <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>▵</mi>\u0000 <mi>μ</mi>\u0000 </msub>\u0000 <annotation>$triangle _{mu }$</annotation>\u0000 </semantics></math> on the graph with the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>CD</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{CD}(m,0)$</annotation>\u0000 </semantics></math> condition.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2444-2461"},"PeriodicalIF":0.9,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144815241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}