{"title":"Sparsity of stable primes for dynamical sequences","authors":"Joachim König","doi":"10.1112/blms.13191","DOIUrl":"https://doi.org/10.1112/blms.13191","url":null,"abstract":"<p>We show that a dynamical sequence <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>f</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>∈</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$(f_n)_{nin mathbb {N}}$</annotation>\u0000 </semantics></math> of polynomials over a number field whose set of stable primes is of positive density must necessarily have a very restricted, and, in particular, virtually prosolvable dynamical Galois group. Together with existing heuristics, our results suggest, moreover, that a polynomial <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> all of whose iterates are irreducible modulo a positive density subset of the primes must necessarily be a composition of linear functions, monomials, and Dickson polynomials.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"203-217"},"PeriodicalIF":0.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the degrees of irreducible characters fixed by some field automorphism in finite groups","authors":"Nicola Grittini","doi":"10.1112/blms.13186","DOIUrl":"https://doi.org/10.1112/blms.13186","url":null,"abstract":"<p>We prove a variant of the theorem of Ito–Michler, investigating the properties of finite groups where a prime number <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> does not divide the degree of any irreducible character left invariant by some Galois automorphism of order <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"120-136"},"PeriodicalIF":0.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Locally flat simple spheres in \u0000 \u0000 \u0000 C\u0000 \u0000 P\u0000 2\u0000 \u0000 \u0000 $mathbb {C}P^2$","authors":"Anthony Conway, Patrick Orson","doi":"10.1112/blms.13188","DOIUrl":"https://doi.org/10.1112/blms.13188","url":null,"abstract":"<p>The fundamental group of the complement of a locally flat surface in a 4-manifold is called the knot group of the surface. In this article, we prove that two locally flat 2-spheres in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^2$</annotation>\u0000 </semantics></math> with knot group <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Z</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$mathbb {Z}_2$</annotation>\u0000 </semantics></math> are ambiently isotopic if they are homologous. This combines with work of Tristram and Lee–Wilczyński, as well as the classification of <span></span><math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>$mathbb {Z}$</annotation>\u0000 </semantics></math>-surfaces, to complete a proof of the statement: a class <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>∈</mo>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≅</mo>\u0000 <mi>Z</mi>\u0000 </mrow>\u0000 <annotation>$d in H_2(mathbb {C}P^2) cong mathbb {Z}$</annotation>\u0000 </semantics></math> is represented by a locally flat sphere with abelian knot group if and only if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mi>d</mi>\u0000 <mo>|</mo>\u0000 <mo>∈</mo>\u0000 <mo>{</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$|d| in lbrace 0,1,2rbrace$</annotation>\u0000 </semantics></math>; and this sphere is unique up to ambient isotopy.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"150-163"},"PeriodicalIF":0.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}