海森堡唯一性对和波动方程

IF 0.9 3区 数学 Q2 MATHEMATICS
Shanlin Huang, Jiaqi Yu
{"title":"海森堡唯一性对和波动方程","authors":"Shanlin Huang,&nbsp;Jiaqi Yu","doi":"10.1112/blms.70095","DOIUrl":null,"url":null,"abstract":"<p>The concept of the Heisenberg uniqueness pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>,</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma, \\Lambda)$</annotation>\n </semantics></math> was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) <b>173</b> (2011), 1507–1527) concern the hyperbola <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mi>ε</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma _{\\epsilon }=\\lbrace (x_1, x_2)\\in \\mathbb {R}^2,\\, x_1x_2=\\epsilon \\rbrace$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≠</mo>\n <mi>ε</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$0\\ne \\epsilon \\in \\mathbb {R}$</annotation>\n </semantics></math>) and lattice-crosses <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Λ</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mi>Z</mi>\n <mo>×</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>∪</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>×</mo>\n <mi>β</mi>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Lambda _{\\alpha \\beta }=(\\alpha \\mathbb {Z}\\times \\lbrace 0\\rbrace)\\cup (\\lbrace 0\\rbrace \\times \\beta \\mathbb {Z})$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\alpha, \\beta &gt;0$</annotation>\n </semantics></math>), where it is proved that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Λ</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma _{\\epsilon }, \\Lambda _{\\alpha \\beta })$</annotation>\n </semantics></math> is a Heisenberg uniqueness pair if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n <mo>⩽</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mo>|</mo>\n <mi>ε</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$\\alpha \\beta \\leqslant 1/|\\epsilon |$</annotation>\n </semantics></math>. In this paper, we study the endpoint case (<span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon =0$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\Gamma _{\\epsilon }$</annotation>\n </semantics></math>) and investigate the minimal information required on the zero set <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> to form such a pair. When <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is the union of two hyperplanes.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2286-2310"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heisenberg uniqueness pairs and the wave equation\",\"authors\":\"Shanlin Huang,&nbsp;Jiaqi Yu\",\"doi\":\"10.1112/blms.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of the Heisenberg uniqueness pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Γ</mi>\\n <mo>,</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\Gamma, \\\\Lambda)$</annotation>\\n </semantics></math> was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) <b>173</b> (2011), 1507–1527) concern the hyperbola <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n <mi>ε</mi>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>=</mo>\\n <mi>ε</mi>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Gamma _{\\\\epsilon }=\\\\lbrace (x_1, x_2)\\\\in \\\\mathbb {R}^2,\\\\, x_1x_2=\\\\epsilon \\\\rbrace$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>≠</mo>\\n <mi>ε</mi>\\n <mo>∈</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$0\\\\ne \\\\epsilon \\\\in \\\\mathbb {R}$</annotation>\\n </semantics></math>) and lattice-crosses <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Λ</mi>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mi>Z</mi>\\n <mo>×</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>∪</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <mo>×</mo>\\n <mi>β</mi>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Lambda _{\\\\alpha \\\\beta }=(\\\\alpha \\\\mathbb {Z}\\\\times \\\\lbrace 0\\\\rbrace)\\\\cup (\\\\lbrace 0\\\\rbrace \\\\times \\\\beta \\\\mathbb {Z})$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\alpha, \\\\beta &gt;0$</annotation>\\n </semantics></math>), where it is proved that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Γ</mi>\\n <mi>ε</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Λ</mi>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\Gamma _{\\\\epsilon }, \\\\Lambda _{\\\\alpha \\\\beta })$</annotation>\\n </semantics></math> is a Heisenberg uniqueness pair if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n <mo>⩽</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mo>|</mo>\\n <mi>ε</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$\\\\alpha \\\\beta \\\\leqslant 1/|\\\\epsilon |$</annotation>\\n </semantics></math>. In this paper, we study the endpoint case (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\epsilon =0$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$\\\\Gamma _{\\\\epsilon }$</annotation>\\n </semantics></math>) and investigate the minimal information required on the zero set <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> to form such a pair. When <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is the union of two hyperplanes.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2286-2310\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70095\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Heisenberg唯一性对(Γ, Λ) $(\Gamma, \Lambda)$的概念是由Hedenmalm和Montes-Rodríguez作为傅里叶变换的不确定性原理的一种变体引入的。主要结果在Hedenmalm和Montes-Rodríguez (Ann。数学。(2) 173 (2011);1507-1527)与双曲线Γ ε = { (x 1, x 2)∈r2,x1 x2 = ε }$\Gamma _{\epsilon }=\lbrace (x_1, x_2)\in \mathbb {R}^2,\, x_1x_2=\epsilon \rbrace$(0≠ε∈R $0\ne \epsilon \in \mathbb {R}$)和格叉有关Λ α β = (α Z × { 0 })∪({ 0 } × β Z) $\Lambda _{\alpha \beta }=(\alpha \mathbb {Z}\times \lbrace 0\rbrace)\cup (\lbrace 0\rbrace \times \beta \mathbb {Z})$ (α, β &gt;0 $\alpha, \beta >0$),其中证明(Γ ε,Λ α β) $(\Gamma _{\epsilon }, \Lambda _{\alpha \beta })$是Heisenberg惟一对当且仅当α β≥1 / | ε | $\alpha \beta \leqslant 1/|\epsilon |$。在本文中,我们研究了端点情况(Γ ε $\Gamma _{\epsilon }$中ε = 0 $\epsilon =0$),并研究了零集Λ $\Lambda$上形成这样一个对所需的最小信息。当Λ $\Lambda$包含在平面上的两条曲线的并集中时,我们使用动力系统条件提供表征。在高维中情况有所不同,当Λ $\Lambda$是两个超平面的并集时,我们得到了特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heisenberg uniqueness pairs and the wave equation

Heisenberg uniqueness pairs and the wave equation

Heisenberg uniqueness pairs and the wave equation

Heisenberg uniqueness pairs and the wave equation

The concept of the Heisenberg uniqueness pair ( Γ , Λ ) $(\Gamma, \Lambda)$ was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) 173 (2011), 1507–1527) concern the hyperbola Γ ε = { ( x 1 , x 2 ) R 2 , x 1 x 2 = ε } $\Gamma _{\epsilon }=\lbrace (x_1, x_2)\in \mathbb {R}^2,\, x_1x_2=\epsilon \rbrace$ ( 0 ε R $0\ne \epsilon \in \mathbb {R}$ ) and lattice-crosses Λ α β = ( α Z × { 0 } ) ( { 0 } × β Z ) $\Lambda _{\alpha \beta }=(\alpha \mathbb {Z}\times \lbrace 0\rbrace)\cup (\lbrace 0\rbrace \times \beta \mathbb {Z})$ ( α , β > 0 $\alpha, \beta >0$ ), where it is proved that ( Γ ε , Λ α β ) $(\Gamma _{\epsilon }, \Lambda _{\alpha \beta })$ is a Heisenberg uniqueness pair if and only if α β 1 / | ε | $\alpha \beta \leqslant 1/|\epsilon |$ . In this paper, we study the endpoint case ( ε = 0 $\epsilon =0$ in Γ ε $\Gamma _{\epsilon }$ ) and investigate the minimal information required on the zero set Λ $\Lambda$ to form such a pair. When Λ $\Lambda$ is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when Λ $\Lambda$ is the union of two hyperplanes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信