{"title":"海森堡唯一性对和波动方程","authors":"Shanlin Huang, Jiaqi Yu","doi":"10.1112/blms.70095","DOIUrl":null,"url":null,"abstract":"<p>The concept of the Heisenberg uniqueness pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>,</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma, \\Lambda)$</annotation>\n </semantics></math> was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) <b>173</b> (2011), 1507–1527) concern the hyperbola <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mi>ε</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma _{\\epsilon }=\\lbrace (x_1, x_2)\\in \\mathbb {R}^2,\\, x_1x_2=\\epsilon \\rbrace$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≠</mo>\n <mi>ε</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$0\\ne \\epsilon \\in \\mathbb {R}$</annotation>\n </semantics></math>) and lattice-crosses <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Λ</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mi>Z</mi>\n <mo>×</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>∪</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>×</mo>\n <mi>β</mi>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Lambda _{\\alpha \\beta }=(\\alpha \\mathbb {Z}\\times \\lbrace 0\\rbrace)\\cup (\\lbrace 0\\rbrace \\times \\beta \\mathbb {Z})$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\alpha, \\beta >0$</annotation>\n </semantics></math>), where it is proved that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Λ</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma _{\\epsilon }, \\Lambda _{\\alpha \\beta })$</annotation>\n </semantics></math> is a Heisenberg uniqueness pair if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n <mo>⩽</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mo>|</mo>\n <mi>ε</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$\\alpha \\beta \\leqslant 1/|\\epsilon |$</annotation>\n </semantics></math>. In this paper, we study the endpoint case (<span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon =0$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\Gamma _{\\epsilon }$</annotation>\n </semantics></math>) and investigate the minimal information required on the zero set <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> to form such a pair. When <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is the union of two hyperplanes.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2286-2310"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heisenberg uniqueness pairs and the wave equation\",\"authors\":\"Shanlin Huang, Jiaqi Yu\",\"doi\":\"10.1112/blms.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of the Heisenberg uniqueness pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Γ</mi>\\n <mo>,</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\Gamma, \\\\Lambda)$</annotation>\\n </semantics></math> was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) <b>173</b> (2011), 1507–1527) concern the hyperbola <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n <mi>ε</mi>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>=</mo>\\n <mi>ε</mi>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Gamma _{\\\\epsilon }=\\\\lbrace (x_1, x_2)\\\\in \\\\mathbb {R}^2,\\\\, x_1x_2=\\\\epsilon \\\\rbrace$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>≠</mo>\\n <mi>ε</mi>\\n <mo>∈</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$0\\\\ne \\\\epsilon \\\\in \\\\mathbb {R}$</annotation>\\n </semantics></math>) and lattice-crosses <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Λ</mi>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mi>Z</mi>\\n <mo>×</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>∪</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n <mo>×</mo>\\n <mi>β</mi>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Lambda _{\\\\alpha \\\\beta }=(\\\\alpha \\\\mathbb {Z}\\\\times \\\\lbrace 0\\\\rbrace)\\\\cup (\\\\lbrace 0\\\\rbrace \\\\times \\\\beta \\\\mathbb {Z})$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\alpha, \\\\beta >0$</annotation>\\n </semantics></math>), where it is proved that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>Γ</mi>\\n <mi>ε</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Λ</mi>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\Gamma _{\\\\epsilon }, \\\\Lambda _{\\\\alpha \\\\beta })$</annotation>\\n </semantics></math> is a Heisenberg uniqueness pair if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n <mo>⩽</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mo>|</mo>\\n <mi>ε</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$\\\\alpha \\\\beta \\\\leqslant 1/|\\\\epsilon |$</annotation>\\n </semantics></math>. In this paper, we study the endpoint case (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\epsilon =0$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$\\\\Gamma _{\\\\epsilon }$</annotation>\\n </semantics></math>) and investigate the minimal information required on the zero set <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> to form such a pair. When <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is the union of two hyperplanes.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2286-2310\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70095\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The concept of the Heisenberg uniqueness pair was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) 173 (2011), 1507–1527) concern the hyperbola () and lattice-crosses (), where it is proved that is a Heisenberg uniqueness pair if and only if . In this paper, we study the endpoint case ( in ) and investigate the minimal information required on the zero set to form such a pair. When is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when is the union of two hyperplanes.