{"title":"Decoupling for Schatten class operators in the setting of quantum harmonic analysis","authors":"Helge J. Samuelsen","doi":"10.1112/blms.13178","DOIUrl":"https://doi.org/10.1112/blms.13178","url":null,"abstract":"<p>We introduce the notion of decoupling for operators, and prove an equivalence between classical <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mi>q</mi>\u0000 </msup>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$ell ^qL^p$</annotation>\u0000 </semantics></math> decoupling for functions and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mi>q</mi>\u0000 </msup>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$ell ^q{mathcal {S}}^p$</annotation>\u0000 </semantics></math> decoupling for operators on bounded sets in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>${mathbb {R}}^{2d}$</annotation>\u0000 </semantics></math>. We also show that the equivalence depends only on the bounded set <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> and not on the values of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>,</mo>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <annotation>$p,q$</annotation>\u0000 </semantics></math> nor on the partition of <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math>. The proof relies on a quantum version of Wiener's division lemma.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"23-37"},"PeriodicalIF":0.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinite unrestricted sumsets of the form \u0000 \u0000 \u0000 B\u0000 +\u0000 B\u0000 \u0000 $B+B$\u0000 in sets with large density","authors":"Ioannis Kousek, Tristán Radić","doi":"10.1112/blms.13180","DOIUrl":"https://doi.org/10.1112/blms.13180","url":null,"abstract":"<p>For a set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mo>⊂</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$A subset {mathbb {N}}$</annotation>\u0000 </semantics></math>, we characterize the existence of an infinite set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>⊂</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$B subset {mathbb {N}}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>∈</mo>\u0000 <mo>{</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$t in lbrace 0,1rbrace$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>+</mo>\u0000 <mi>B</mi>\u0000 <mo>⊂</mo>\u0000 <mi>A</mi>\u0000 <mo>−</mo>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation>$B+B subset A-t$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>+</mo>\u0000 <mi>B</mi>\u0000 <mo>=</mo>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <mi>B</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$B+B =lbrace b_1+b_2colon b_1,b_2 in Brbrace$</annotation>\u0000 </semantics></math>, in terms of the density of the set <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>. Specifically, when the lower density <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <munder>\u0000 <mrow>\u0000 <mrow></m","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"48-68"},"PeriodicalIF":0.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}