Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
On torsion-freeness of Kähler differential sheaves 论凯勒微分卷的无扭性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-02 DOI: 10.1112/blms.13114
Nilkantha Das, Sumit Roy
{"title":"On torsion-freeness of Kähler differential sheaves","authors":"Nilkantha Das,&nbsp;Sumit Roy","doi":"10.1112/blms.13114","DOIUrl":"https://doi.org/10.1112/blms.13114","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> be a normal algebraic variety over an algebraically closed field <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>. We prove that the Kähler differential sheaf of <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> is torsion-free if and only if any regular section of the ideal sheaf of the first order deformation of <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> inside <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <msub>\u0000 <mo>×</mo>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$Xtimes _k X$</annotation>\u0000 </semantics></math>, defined outside the singular locus of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <msub>\u0000 <mo>×</mo>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$X times _k X$</annotation>\u0000 </semantics></math>, extends regularly to the singular locus.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2982-2990"},"PeriodicalIF":0.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric property (T) and Kazhdan projections 几何特性 (T) 和卡兹丹投影
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-01 DOI: 10.1112/blms.13111
I. Vergara
{"title":"Geometric property (T) and Kazhdan projections","authors":"I. Vergara","doi":"10.1112/blms.13111","DOIUrl":"https://doi.org/10.1112/blms.13111","url":null,"abstract":"<p>We characterise Geometric Property (T) by the existence of a certain projection in the maximal uniform Roe algebra <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 <mo>,</mo>\u0000 <mi>max</mi>\u0000 </mrow>\u0000 <mo>∗</mo>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$C_{u,max }^*(X)$</annotation>\u0000 </semantics></math>, extending the notion of Kazhdan projection for groups to the realm of metric spaces. We also describe this projection in terms of the decomposition of the metric space into coarsely connected components.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2935-2950"},"PeriodicalIF":0.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthonormal representations, vector chromatic number, and extension complexity 正则表达式、向量色度数和扩展复杂度
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-01 DOI: 10.1112/blms.13109
Igor Balla
{"title":"Orthonormal representations, vector chromatic number, and extension complexity","authors":"Igor Balla","doi":"10.1112/blms.13109","DOIUrl":"10.1112/blms.13109","url":null,"abstract":"<p>We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lovász theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we answer a question from our previous work together with Letzter and Sudakov, while also addressing a question of Hrubeš and of Kwan, Sauermann, and Zhao. Along the way, we derive a couple of general lower bounds for the vector chromatic number which may be of independent interest.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2911-2921"},"PeriodicalIF":0.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141714289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A strong FKG inequality for multiple events FKG 对多个事件的强烈不平等性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-29 DOI: 10.1112/blms.13101
Nikita Gladkov
{"title":"A strong FKG inequality for multiple events","authors":"Nikita Gladkov","doi":"10.1112/blms.13101","DOIUrl":"https://doi.org/10.1112/blms.13101","url":null,"abstract":"<p>We extend the Fortuin–Kasteleyn–Ginibre (FKG) inequality to cover multiple events with equal pairwise intersections. We then apply this inequality to resolve Kahn's question on positive associated measures, as well as prove new inequalities concerning random graphs and probabilities of connection in Bernoulli percolation.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2794-2801"},"PeriodicalIF":0.8,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On roots of quadratic congruences 关于二次全等的根
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-26 DOI: 10.1112/blms.13108
Hieu T. Ngo
{"title":"On roots of quadratic congruences","authors":"Hieu T. Ngo","doi":"10.1112/blms.13108","DOIUrl":"https://doi.org/10.1112/blms.13108","url":null,"abstract":"<p>The equidistribution of roots of quadratic congruences with prime moduli depends crucially upon effective bounds for special Weyl linear forms. Duke, Friedlander and Iwaniec discovered strong estimates for these Weyl linear forms when the quadratic polynomial has negative discriminant. Tóth proved analogous but weaker bounds when the quadratic polynomial has positive discriminant. We establish strong estimates for these Weyl linear forms for quadratics of positive discriminants. As an application of our bounds, we derive a quantitative uniform distribution of modular square roots with integer moduli in an arithmetic progression.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2886-2910"},"PeriodicalIF":0.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristic foliations — A survey 特征叶形 - 综述
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-24 DOI: 10.1112/blms.13107
Fabrizio Anella, Daniel Huybrechts
{"title":"Characteristic foliations — A survey","authors":"Fabrizio Anella,&nbsp;Daniel Huybrechts","doi":"10.1112/blms.13107","DOIUrl":"https://doi.org/10.1112/blms.13107","url":null,"abstract":"<p>This is a survey article, with essentially complete proofs, of a series of recent results concerning the geometry of the characteristic foliation on smooth divisors in compact hyperkähler manifolds, starting with work by Hwang–Viehweg, but also covering articles by Amerik–Campana and Abugaliev. The restriction of the holomorphic symplectic form on a hyperkähler manifold <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> to a smooth hypersurface <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 <mo>⊂</mo>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$Dsubset X$</annotation>\u0000 </semantics></math> leads to a regular foliation <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mo>⊂</mo>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mi>D</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${mathcal {F}}subset {mathcal {T}}_D$</annotation>\u0000 </semantics></math> of rank 1, the characteristic foliation. The picture is complete in dimension 4 and shows that the behaviour of the leaves of <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>${mathcal {F}}$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$D$</annotation>\u0000 </semantics></math> is determined by the Beauville–Bogomolov square <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 <mo>(</mo>\u0000 <mi>D</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$q(D)$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$D$</annotation>\u0000 </semantics></math>. In higher dimensions, some of the results depend on the abundance conjecture for <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$D$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2231-2249"},"PeriodicalIF":0.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraicity of hypergeometric functions with arbitrary parameters 具有任意参数的超几何函数的代数性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-22 DOI: 10.1112/blms.13103
Florian Fürnsinn, Sergey Yurkevich
{"title":"Algebraicity of hypergeometric functions with arbitrary parameters","authors":"Florian Fürnsinn,&nbsp;Sergey Yurkevich","doi":"10.1112/blms.13103","DOIUrl":"https://doi.org/10.1112/blms.13103","url":null,"abstract":"<p>We provide a complete classification of the algebraicity of (generalized) hypergeometric functions with no restriction on the set of their parameters. Our characterization relies on the interlacing criteria of Christol and Beukers–Heckman for globally bounded and algebraic hypergeometric functions, however, in a more general setting that allows arbitrary complex parameters with possibly integral differences. We also showcase the adapted criterion on a variety of different examples.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2824-2846"},"PeriodicalIF":0.8,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Configuration spaces as commutative monoids 作为交换单体的配置空间
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-20 DOI: 10.1112/blms.13104
Oscar Randal-Williams
{"title":"Configuration spaces as commutative monoids","authors":"Oscar Randal-Williams","doi":"10.1112/blms.13104","DOIUrl":"https://doi.org/10.1112/blms.13104","url":null,"abstract":"<p>After one-point compactification, the collection of all unordered configuration spaces of a manifold admits a commutative multiplication by superposition of configurations. We explain a simple (derived) presentation for this commutative monoid object. Using this presentation, one can quickly deduce Knudsen's formula for the rational cohomology of configuration spaces, prove rational homological stability and understand how automorphisms of the manifold act on the cohomology of configuration spaces. Similar considerations reproduce the work of Farb–Wolfson–Wood on homological densities.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2847-2862"},"PeriodicalIF":0.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved error term for counting D 4 $D_4$ -quartic fields 计算 D 4 $D_4$ 方场的改进误差项
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-17 DOI: 10.1112/blms.13106
Kevin J. McGown, Amanda Tucker
{"title":"An improved error term for counting \u0000 \u0000 \u0000 D\u0000 4\u0000 \u0000 $D_4$\u0000 -quartic fields","authors":"Kevin J. McGown,&nbsp;Amanda Tucker","doi":"10.1112/blms.13106","DOIUrl":"https://doi.org/10.1112/blms.13106","url":null,"abstract":"<p>We prove that the number of quartic fields <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> with discriminant <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>Δ</mi>\u0000 <mi>K</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mo>⩽</mo>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$|Delta _K|leqslant X$</annotation>\u0000 </semantics></math> whose Galois closure is <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>D</mi>\u0000 <mn>4</mn>\u0000 </msub>\u0000 <annotation>$D_4$</annotation>\u0000 </semantics></math> equals <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <mi>X</mi>\u0000 <mo>+</mo>\u0000 <mi>O</mi>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mrow>\u0000 <mn>5</mn>\u0000 <mo>/</mo>\u0000 <mn>8</mn>\u0000 <mo>+</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$CX+O(X^{5/8+varepsilon })$</annotation>\u0000 </semantics></math>, improving the error term in a well-known result of Cohen, Diaz y Diaz, and Olivier. We prove an analogous result for counting quartic dihedral extensions over an arbitrary base field.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2874-2885"},"PeriodicalIF":0.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpolation of fat points on K3 and abelian surfaces K3 和无常曲面上的胖点插值
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-16 DOI: 10.1112/blms.13105
Adrian Zahariuc
{"title":"Interpolation of fat points on K3 and abelian surfaces","authors":"Adrian Zahariuc","doi":"10.1112/blms.13105","DOIUrl":"https://doi.org/10.1112/blms.13105","url":null,"abstract":"<p>We prove that any number of general fat points of any multiplicities impose the expected number of conditions on a linear system on a smooth projective surface, in several cases including primitive linear systems on very general K3 and abelian surfaces, “Du Val” linear systems on blowups of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>${mathbb {P}}^2$</annotation>\u0000 </semantics></math> at nine very general points, and certain linear systems on some ruled surfaces over elliptic curves. This is done by answering a question of the author about the case of only one fat point on a certain ruled surface, which follows from a circle of results due to Treibich–Verdier, Segal–Wilson, and others.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2863-2873"},"PeriodicalIF":0.8,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信