Asymptotic behavior of Moncrief Lines in constant curvature space-times

IF 0.8 3区 数学 Q2 MATHEMATICS
Mehdi Belraouti, Abderrahim Mesbah, Lamine Messaci
{"title":"Asymptotic behavior of Moncrief Lines in constant curvature space-times","authors":"Mehdi Belraouti,&nbsp;Abderrahim Mesbah,&nbsp;Lamine Messaci","doi":"10.1112/blms.70032","DOIUrl":null,"url":null,"abstract":"<p>We study the asymptotic behavior of Moncrief lines on <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2+1$</annotation>\n </semantics></math> maximal globally hyperbolic spatially compact space-time <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> of nonnegative constant curvature. We show that when the unique geodesic lamination associated with <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is either maximal uniquely ergodic or simplicial, the Moncrief line converges, as time goes to zero, to a unique point in the Thurston boundary of the Teichmüller space.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1347-1359"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of Moncrief lines on 2 + 1 $2+1$ maximal globally hyperbolic spatially compact space-time M $M$ of nonnegative constant curvature. We show that when the unique geodesic lamination associated with M $M$ is either maximal uniquely ergodic or simplicial, the Moncrief line converges, as time goes to zero, to a unique point in the Thurston boundary of the Teichmüller space.

常曲率时空中Moncrief线的渐近性质
研究了非负常曲率的2+1$ 2+1$极大整体双曲空间紧时空M$ M$上Moncrief线的渐近行为。我们证明了当与M$ M$相关联的唯一测地线层合是极大唯一遍历的或简单的,当时间趋近于0时,Moncrief线收敛于teichm空间的Thurston边界上的一个唯一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信