{"title":"关于整数平铺的最小周期","authors":"Izabella Łaba, Dmitrii Zakharov","doi":"10.1112/blms.70023","DOIUrl":null,"url":null,"abstract":"<p>If a finite set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> tiles the integers by translations, it also admits a tiling whose period <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> has the same prime factors as <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|A|$</annotation>\n </semantics></math>. We prove that the minimal period of such a tiling is bounded by <span></span><math>\n <semantics>\n <mrow>\n <mi>exp</mi>\n <mo>(</mo>\n <mi>c</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>/</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\exp (c(\\log D)^2/\\log \\log D)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> is the diameter of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. In the converse direction, given <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon >0$</annotation>\n </semantics></math>, we construct tilings whose minimal period has the same prime factors as <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|A|$</annotation>\n </semantics></math> and is bounded from below by <span></span><math>\n <semantics>\n <msup>\n <mi>D</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n <annotation>$D^{3/2-\\epsilon }$</annotation>\n </semantics></math>. We also discuss the relationship between minimal tiling period estimates and the Coven–Meyerowitz conjecture.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1160-1170"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70023","citationCount":"0","resultStr":"{\"title\":\"On the minimal period of integer tilings\",\"authors\":\"Izabella Łaba, Dmitrii Zakharov\",\"doi\":\"10.1112/blms.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If a finite set <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> tiles the integers by translations, it also admits a tiling whose period <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> has the same prime factors as <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|A|$</annotation>\\n </semantics></math>. We prove that the minimal period of such a tiling is bounded by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>exp</mi>\\n <mo>(</mo>\\n <mi>c</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <mo>/</mo>\\n <mi>log</mi>\\n <mi>log</mi>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\exp (c(\\\\log D)^2/\\\\log \\\\log D)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math> is the diameter of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. In the converse direction, given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\epsilon >0$</annotation>\\n </semantics></math>, we construct tilings whose minimal period has the same prime factors as <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|A|$</annotation>\\n </semantics></math> and is bounded from below by <span></span><math>\\n <semantics>\\n <msup>\\n <mi>D</mi>\\n <mrow>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>−</mo>\\n <mi>ε</mi>\\n </mrow>\\n </msup>\\n <annotation>$D^{3/2-\\\\epsilon }$</annotation>\\n </semantics></math>. We also discuss the relationship between minimal tiling period estimates and the Coven–Meyerowitz conjecture.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1160-1170\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果一个有限集 A $A$ 通过平移对整数进行平铺,那么它也允许一个平铺,其周期 M $M$ 与 | A | $A|$ 具有相同的质因数。我们证明这样一个平铺的最小周期的边界是 exp ( c ( log D ) 2 / log log D ) $\exp (c(\log D)^2/\log \log D)$ ,其中 D $D$ 是 A $A$ 的直径。反过来,给定 ε > 0 $\epsilon >0$ 时,我们会构造出其最小周期与 | A | $|A|$ 具有相同质因数且自下而上受 D 3 / 2 - ε $D^{3/2-\epsilon }$ 约束的倾斜图。我们还讨论了最小平铺周期估计与 Coven-Meyerowitz 猜想之间的关系。
If a finite set tiles the integers by translations, it also admits a tiling whose period has the same prime factors as . We prove that the minimal period of such a tiling is bounded by , where is the diameter of . In the converse direction, given , we construct tilings whose minimal period has the same prime factors as and is bounded from below by . We also discuss the relationship between minimal tiling period estimates and the Coven–Meyerowitz conjecture.