A comparison of Hochschild homology in algebraic and smooth settings

IF 0.8 3区 数学 Q2 MATHEMATICS
David Kazhdan, Maarten Solleveld
{"title":"A comparison of Hochschild homology in algebraic and smooth settings","authors":"David Kazhdan,&nbsp;Maarten Solleveld","doi":"10.1112/blms.70028","DOIUrl":null,"url":null,"abstract":"<p>Consider a complex affine variety <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math> and a real analytic Zariski-dense submanifold <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math>. We compare modules over the ring <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O} (\\tilde{V})$</annotation>\n </semantics></math> of regular functions on <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math> with modules over the ring <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math> of smooth complex valued functions on <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>. Under a mild condition on the tangent spaces, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math> is flat as a module over <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O} (\\tilde{V})$</annotation>\n </semantics></math>. From this, we deduce a comparison theorem for the Hochschild homology of finite-type algebras over <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O} (\\tilde{V})$</annotation>\n </semantics></math> and the Hochschild homology of similar algebras over <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math>. We also establish versions of these results for functions on <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>) that are invariant under the action of a finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. As an auxiliary result, we show that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math> has finite rank as module over <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mi>G</mi>\n </msup>\n </mrow>\n <annotation>$C^\\infty (V)^G$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1249-1269"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a complex affine variety V $\tilde{V}$ and a real analytic Zariski-dense submanifold V $V$ of V $\tilde{V}$ . We compare modules over the ring O ( V ) $\mathcal {O} (\tilde{V})$ of regular functions on V $\tilde{V}$ with modules over the ring C ( V ) $C^\infty (V)$ of smooth complex valued functions on  V $V$ . Under a mild condition on the tangent spaces, we prove that C ( V ) $C^\infty (V)$ is flat as a module over O ( V ) $\mathcal {O} (\tilde{V})$ . From this, we deduce a comparison theorem for the Hochschild homology of finite-type algebras over O ( V ) $\mathcal {O} (\tilde{V})$ and the Hochschild homology of similar algebras over C ( V ) $C^\infty (V)$ . We also establish versions of these results for functions on V $\tilde{V}$ (resp. V $V$ ) that are invariant under the action of a finite group G $G$ . As an auxiliary result, we show that C ( V ) $C^\infty (V)$ has finite rank as module over C ( V ) G $C^\infty (V)^G$ .

Abstract Image

代数与光滑条件下Hochschild同调的比较
考虑一个复仿射变体V ~ $\tilde{V}$和一个V ~ $\tilde{V}$的实解析zariski稠密子流形V $V$。我们比较了V ~ $\tilde{V}$上正则函数的环O (V ~) $\mathcal {O} (\tilde{V})$上的模与环上的模V $V$上光滑复值函数的C∞(V) $C^\infty (V)$。在切空间的温和条件下,我们证明了C∞(V) $C^\infty (V)$作为O (V ~)上的模是平坦的) $\mathcal {O} (\tilde{V})$。由此,我们推导了O (V ~) $\mathcal {O} (\tilde{V})$上有限型代数的Hochschild同调和C上相似代数的Hochschild同调的比较定理∞(V) $C^\infty (V)$。我们还在V ~ $\tilde{V}$ (resp.)上建立了这些结果的函数版本。V $V$),它们在有限群G的作用下不变$G$。作为辅助结果,我们证明C∞(V) $C^\infty (V)$作为C∞上的模具有有限秩(五)G $C^\infty (V)^G$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信