Distinguishing internally club and approachable on an Infinite interval

IF 0.8 3区 数学 Q2 MATHEMATICS
Hannes Jakob, Maxwell Levine
{"title":"Distinguishing internally club and approachable on an Infinite interval","authors":"Hannes Jakob,&nbsp;Maxwell Levine","doi":"10.1112/blms.70013","DOIUrl":null,"url":null,"abstract":"<p>Krueger showed that <span></span><math>\n <semantics>\n <mi>PFA</mi>\n <annotation>${\\textsf {PFA}}$</annotation>\n </semantics></math> implies that for all regular <span></span><math>\n <semantics>\n <mrow>\n <mi>Θ</mi>\n <mo>⩾</mo>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\Theta \\geqslant \\aleph _2$</annotation>\n </semantics></math>, there are stationarily many <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>Θ</mi>\n <mo>)</mo>\n </mrow>\n <mo>]</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>1</mn>\n </msub>\n </msup>\n <annotation>$[H(\\Theta)]^{\\aleph _1}$</annotation>\n </semantics></math> that are internally club but not internally approachable. From countably many Mahlo cardinals, we force a model in which, for all positive <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&lt;</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$n&lt;\\omega$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Θ</mi>\n <mo>⩾</mo>\n <msub>\n <mi>ℵ</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\Theta \\geqslant \\aleph _{n+1}$</annotation>\n </semantics></math>, there is a stationary subset of <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>Θ</mi>\n <mo>)</mo>\n </mrow>\n <mo>]</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mi>n</mi>\n </msub>\n </msup>\n <annotation>$[H(\\Theta)]^{\\aleph _n}$</annotation>\n </semantics></math> consisting of sets that are internally club but not internally approachable. The theorem is obtained using a new variant of Mitchell forcing. This answers questions of Krueger.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1026-1039"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70013","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Krueger showed that PFA ${\textsf {PFA}}$ implies that for all regular Θ 2 $\Theta \geqslant \aleph _2$ , there are stationarily many [ H ( Θ ) ] 1 $[H(\Theta)]^{\aleph _1}$ that are internally club but not internally approachable. From countably many Mahlo cardinals, we force a model in which, for all positive n < ω $n<\omega$ and Θ n + 1 $\Theta \geqslant \aleph _{n+1}$ , there is a stationary subset of [ H ( Θ ) ] n $[H(\Theta)]^{\aleph _n}$ consisting of sets that are internally club but not internally approachable. The theorem is obtained using a new variant of Mitchell forcing. This answers questions of Krueger.

区分内部俱乐部和可接近的无限间隔
Krueger展示了PFA ${\textsf {PFA}}$ 这意味着对于所有规则Θ大于或等于2 $\Theta \geqslant \aleph _2$ ,有平稳的多个[H (Θ)]¹ $[H(\Theta)]^{\aleph _1}$ 他们是俱乐部内部的人,但不是内部的人。从可数的Mahlo基数出发,我们建立了一个模型,在这个模型中,对于所有正的n &lt;ω $n<\omega$ 和Θ小于或等于n + 1 $\Theta \geqslant \aleph _{n+1}$ ,存在一个平稳子集[H (Θ)] ~ (n) $[H(\Theta)]^{\aleph _n}$ 由内部俱乐部但内部不可接近的集合组成的。该定理是利用米切尔强迫的一种新变体得到的。这回答了克鲁格的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信