{"title":"Distinguishing internally club and approachable on an Infinite interval","authors":"Hannes Jakob, Maxwell Levine","doi":"10.1112/blms.70013","DOIUrl":null,"url":null,"abstract":"<p>Krueger showed that <span></span><math>\n <semantics>\n <mi>PFA</mi>\n <annotation>${\\textsf {PFA}}$</annotation>\n </semantics></math> implies that for all regular <span></span><math>\n <semantics>\n <mrow>\n <mi>Θ</mi>\n <mo>⩾</mo>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\Theta \\geqslant \\aleph _2$</annotation>\n </semantics></math>, there are stationarily many <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>Θ</mi>\n <mo>)</mo>\n </mrow>\n <mo>]</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>1</mn>\n </msub>\n </msup>\n <annotation>$[H(\\Theta)]^{\\aleph _1}$</annotation>\n </semantics></math> that are internally club but not internally approachable. From countably many Mahlo cardinals, we force a model in which, for all positive <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo><</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$n<\\omega$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Θ</mi>\n <mo>⩾</mo>\n <msub>\n <mi>ℵ</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\Theta \\geqslant \\aleph _{n+1}$</annotation>\n </semantics></math>, there is a stationary subset of <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>Θ</mi>\n <mo>)</mo>\n </mrow>\n <mo>]</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mi>n</mi>\n </msub>\n </msup>\n <annotation>$[H(\\Theta)]^{\\aleph _n}$</annotation>\n </semantics></math> consisting of sets that are internally club but not internally approachable. The theorem is obtained using a new variant of Mitchell forcing. This answers questions of Krueger.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1026-1039"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70013","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Krueger showed that implies that for all regular , there are stationarily many that are internally club but not internally approachable. From countably many Mahlo cardinals, we force a model in which, for all positive and , there is a stationary subset of consisting of sets that are internally club but not internally approachable. The theorem is obtained using a new variant of Mitchell forcing. This answers questions of Krueger.