The Algebraic Kirchberg–Phillips Question for Leavitt path algebras

IF 0.8 3区 数学 Q2 MATHEMATICS
Efren Ruiz
{"title":"The Algebraic Kirchberg–Phillips Question for Leavitt path algebras","authors":"Efren Ruiz","doi":"10.1112/blms.70027","DOIUrl":null,"url":null,"abstract":"<p>The Algebraic Kirchberg–Phillips Question for Leavitt path algebras asks whether pointed <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory is a complete isomorphism invariant for unital, simple, purely infinite Leavitt path algebras over finite graphs. Most work on this problem has focused on determining whether (up to isomorphism) there is a unique unital, simple, Leavitt path algebra with trivial <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory (often reformulated as the question of whether the Leavitt path algebras <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mn>2</mn>\n </msub>\n <annotation>$L_2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <msub>\n <mn>2</mn>\n <mo>−</mo>\n </msub>\n </msub>\n <annotation>$L_{2_-}$</annotation>\n </semantics></math> are isomorphic). However, it is unknown whether a positive answer to this special case implies a positive answer to the Algebraic Kirchberg–Phillips Question. In this note, we pose a different question that asks whether two particular non-simple Leavitt path algebras <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mo>∗</mo>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L_k(\\mathbf {F}_*)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mrow>\n <mo>∗</mo>\n <mo>∗</mo>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L_k(\\mathbf {F}_{**})$</annotation>\n </semantics></math> are isomorphic, and we prove that a positive answer to this question implies a positive answer to the Algebraic Kirchberg–Phillips Question.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1229-1248"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Algebraic Kirchberg–Phillips Question for Leavitt path algebras asks whether pointed K $K$ -theory is a complete isomorphism invariant for unital, simple, purely infinite Leavitt path algebras over finite graphs. Most work on this problem has focused on determining whether (up to isomorphism) there is a unique unital, simple, Leavitt path algebra with trivial K $K$ -theory (often reformulated as the question of whether the Leavitt path algebras L 2 $L_2$ and L 2 $L_{2_-}$ are isomorphic). However, it is unknown whether a positive answer to this special case implies a positive answer to the Algebraic Kirchberg–Phillips Question. In this note, we pose a different question that asks whether two particular non-simple Leavitt path algebras L k ( F ) $L_k(\mathbf {F}_*)$ and L k ( F ) $L_k(\mathbf {F}_{**})$ are isomorphic, and we prove that a positive answer to this question implies a positive answer to the Algebraic Kirchberg–Phillips Question.

Leavitt路径代数的代数Kirchberg-Phillips问题
莱维特路径代数的代数Kirchberg-Phillips问题:对于有限图上的一元、简单、纯无限的莱维特路径代数,点K$ K$理论是否是完全同构不变量。关于这个问题的大部分工作都集中在确定是否存在(到同构为止)唯一的、单一的、具有平凡K$ K$理论的莱维特路径代数(通常被重新表述为莱维特路径代数l2 $L_2$和l2 - $L_{2_-}$是否同构的问题)。然而,对于这种特殊情况的正答案是否意味着代数Kirchberg-Phillips问题的正答案是未知的。在这篇文章中,我们提出一个不同的问题,问两个特定的非简单莱维特路径代数lk (F∗)$ L_k(\mathbf {F}_*)$和L k(F **)$ L_k(\mathbf {F}_{**})$是同构的,我们证明了这个问题的正答案意味着代数Kirchberg-Phillips问题的正答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信