Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
p ∞ $p^{infty }$ -Selmer ranks of CM abelian varieties p∞$p^{infty }$-Selmer ranks of CM abelian varieties
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-06 DOI: 10.1112/blms.13094
Jamie Bell
{"title":"p\u0000 ∞\u0000 \u0000 $p^{infty }$\u0000 -Selmer ranks of CM abelian varieties","authors":"Jamie Bell","doi":"10.1112/blms.13094","DOIUrl":"10.1112/blms.13094","url":null,"abstract":"<p>For an elliptic curve with complex multiplication over a number field, the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>p</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$p^{infty }$</annotation>\u0000 </semantics></math>-Selmer rank is even for all <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. Česnavičius proved this using the fact that <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> admits a <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-isogeny whenever <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> splits in the complex multiplication field, and invoking known cases of the <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-parity conjecture. We give a direct proof, and generalise the result to abelian varieties.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2711-2717"},"PeriodicalIF":0.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigidity of inverse problems for nonlinear elliptic equations on manifolds 流形上非线性椭圆方程反问题的刚性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-05 DOI: 10.1112/blms.13102
Ali Feizmohammadi, Yavar Kian, Lauri Oksanen
{"title":"Rigidity of inverse problems for nonlinear elliptic equations on manifolds","authors":"Ali Feizmohammadi,&nbsp;Yavar Kian,&nbsp;Lauri Oksanen","doi":"10.1112/blms.13102","DOIUrl":"https://doi.org/10.1112/blms.13102","url":null,"abstract":"<p>We consider the inverse problem of determining coefficients appearing in semilinear elliptic equations stated on Riemannian manifolds with boundary given the knowledge of the associated Dirichlet-to-Neumann map. We begin with a negative answer to this problem. Owing to this obstruction, we consider a new formulation of our inverse problem in terms of a rigidity problem. Precisely, we consider cases where the Dirichlet-to-Neumann map of a semilinear equation coincides with the one of a linear equation and ask whether this implies that the equation must indeed be linear. We give a positive answer to this rigidity problem under some assumptions imposed on the Riemannian manifold and the semilinear term under consideration.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2802-2823"},"PeriodicalIF":0.8,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The finite type of modules of bounded projective dimension and Serre's conditions 有界投影维数模块的有限类型与塞尔条件
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-06-01 DOI: 10.1112/blms.13099
Michal Hrbek, Giovanna Le Gros
{"title":"The finite type of modules of bounded projective dimension and Serre's conditions","authors":"Michal Hrbek,&nbsp;Giovanna Le Gros","doi":"10.1112/blms.13099","DOIUrl":"10.1112/blms.13099","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> be a commutative Noetherian ring. For a natural number <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>, we prove that the class of modules of projective dimension bounded by <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> is of finite type if and only if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> satisfies Serre's condition <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(S_k)$</annotation>\u0000 </semantics></math>. In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-dimensional version of the Govorov–Lazard theorem holds if and only if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> satisfies the ‘almost’ Serre condition <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(C_{k+1})$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2760-2775"},"PeriodicalIF":0.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paucity phenomena for polynomial products 多项式积的贫乏现象
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-31 DOI: 10.1112/blms.13095
Victor Y. Wang, Max Wenqiang Xu
{"title":"Paucity phenomena for polynomial products","authors":"Victor Y. Wang,&nbsp;Max Wenqiang Xu","doi":"10.1112/blms.13095","DOIUrl":"https://doi.org/10.1112/blms.13095","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 <mo>∈</mo>\u0000 <mi>Z</mi>\u0000 <mo>[</mo>\u0000 <mi>x</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$P(x)in mathbb {Z}[x]$</annotation>\u0000 </semantics></math> be a polynomial with at least two distinct complex roots. We prove that the number of solutions <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>⋯</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>y</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>⋯</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>y</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>N</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$(x_1, dots, x_k, y_1, dots, y_k)in [N]^{2k}$</annotation>\u0000 </semantics></math> to the equation\u0000\u0000 </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2718-2726"},"PeriodicalIF":0.8,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The class group of a minimal model of a quotient singularity 商奇点最小模型的类群
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-30 DOI: 10.1112/blms.13100
Johannes Schmitt
{"title":"The class group of a minimal model of a quotient singularity","authors":"Johannes Schmitt","doi":"10.1112/blms.13100","DOIUrl":"https://doi.org/10.1112/blms.13100","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>V</mi>\u0000 <annotation>$V$</annotation>\u0000 </semantics></math> be a finite-dimensional vector space over the complex numbers and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>⩽</mo>\u0000 <mo>SL</mo>\u0000 <mo>(</mo>\u0000 <mi>V</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Gleqslant operatorname{SL}(V)$</annotation>\u0000 </semantics></math> be a finite group. We describe the class group of a minimal model (i.e., <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$mathbb {Q}$</annotation>\u0000 </semantics></math>-factorial terminalization) of the linear quotient <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 <mo>/</mo>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$V/G$</annotation>\u0000 </semantics></math>. We prove that such a class group is completely controlled by the junior elements contained in <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2777-2793"},"PeriodicalIF":0.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moderate deviations for rough differential equations 粗略微分方程的适度偏差
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-29 DOI: 10.1112/blms.13097
Yuzuru Inahama, Yong Xu, Xiaoyu Yang
{"title":"Moderate deviations for rough differential equations","authors":"Yuzuru Inahama,&nbsp;Yong Xu,&nbsp;Xiaoyu Yang","doi":"10.1112/blms.13097","DOIUrl":"https://doi.org/10.1112/blms.13097","url":null,"abstract":"<p>Small noise problems are quite important for all types of stochastic differential equations. In this paper, we focus on rough differential equations driven by scaled fractional Brownian rough path with Hurst parameter <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$Hin (1/4, 1/2]$</annotation>\u0000 </semantics></math>. We prove a moderate deviation principle for this equation as the scale parameter tends to zero.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2738-2748"},"PeriodicalIF":0.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete spectrum of the magnetic Laplacian on perturbed half-planes 扰动半平面上的磁拉普拉斯离散谱
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-28 DOI: 10.1112/blms.13070
Virginie Bonnaillie-Noël, Søren Fournais, Ayman Kachmar, Nicolas Raymond
{"title":"Discrete spectrum of the magnetic Laplacian on perturbed half-planes","authors":"Virginie Bonnaillie-Noël,&nbsp;Søren Fournais,&nbsp;Ayman Kachmar,&nbsp;Nicolas Raymond","doi":"10.1112/blms.13070","DOIUrl":"https://doi.org/10.1112/blms.13070","url":null,"abstract":"<p>The existence of bound states for the magnetic Laplacian in unbounded domains can be quite challenging in the case of a homogeneous magnetic field. We provide an affirmative answer for almost flat corners and slightly curved half-planes when the total curvature of the boundary is positive.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2529-2551"},"PeriodicalIF":0.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a problem of Erdős and Graham about consecutive sums in strictly increasing sequences 论厄尔多斯和格雷厄姆关于严格递增序列中连续和的一个问题
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-28 DOI: 10.1112/blms.13098
Adrian Beker
{"title":"On a problem of Erdős and Graham about consecutive sums in strictly increasing sequences","authors":"Adrian Beker","doi":"10.1112/blms.13098","DOIUrl":"https://doi.org/10.1112/blms.13098","url":null,"abstract":"<p>We show the existence of a constant <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$c &amp;gt; 0$</annotation>\u0000 </semantics></math> such that, for all positive integers <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>, there exist integers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <msub>\u0000 <mi>a</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>&lt;</mo>\u0000 <mi>⋯</mi>\u0000 <mo>&lt;</mo>\u0000 <msub>\u0000 <mi>a</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>≤</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation>$1 leq a_1 &amp;lt; cdots &amp;lt; a_k leq n$</annotation>\u0000 </semantics></math> such that there are at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <msup>\u0000 <mi>n</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$cn^2$</annotation>\u0000 </semantics></math> distinct integers of the form <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mo>∑</mo>\u0000 <mrow>\u0000 <mi>i</mi>\u0000 <mo>=</mo>\u0000 <mi>u</mi>\u0000 </mrow>\u0000 <mi>v</mi>\u0000 </msubsup>\u0000 <msub>\u0000 <mi>a</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$sum _{i=u}^{v}a_i$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <mi>u</mi>\u0000 <mo>≤</mo>\u0000 <mi>v</mi>\u0000 <mo>≤</mo>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$1 leq u leq v leq k$</annotation>\u0000 </semantics></math>. This answers a question of Erdős and Graham. We also prove a non-trivial upper bound on the maximum number of distinct integers of this form and address several open problems.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2749-2759"},"PeriodicalIF":0.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On functional successive minima 关于功能性连续最小值
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-28 DOI: 10.1112/blms.13096
F. Amoroso, D. Masser, U. Zannier
{"title":"On functional successive minima","authors":"F. Amoroso,&nbsp;D. Masser,&nbsp;U. Zannier","doi":"10.1112/blms.13096","DOIUrl":"https://doi.org/10.1112/blms.13096","url":null,"abstract":"<p>In the classical Geometry of Numbers, the calculation of successive minima may be quite difficult, even in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>${bf R}^2$</annotation>\u0000 </semantics></math> using the norm coming from a distance function associated to a set. In the literature, there seem to be hardly any analogues when <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>${bf R}$</annotation>\u0000 </semantics></math> is replaced by the algebraic closure of a function field in one variable and one uses a norm arising from the absolute height. Here, we calculate a one-parameter family of examples that naturally arose in our recent paper on bounded heights. We also comment on whether the minima are attained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2727-2737"},"PeriodicalIF":0.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative discrete moments of the derivative of the Riemann zeta-function 黎曼zeta函数导数的负离散矩
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-05-27 DOI: 10.1112/blms.13092
Hung M. Bui, Alexandra Florea, Micah B. Milinovich
{"title":"Negative discrete moments of the derivative of the Riemann zeta-function","authors":"Hung M. Bui,&nbsp;Alexandra Florea,&nbsp;Micah B. Milinovich","doi":"10.1112/blms.13092","DOIUrl":"https://doi.org/10.1112/blms.13092","url":null,"abstract":"<p>We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta-function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>⩽</mo>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$kleqslant 1/2$</annotation>\u0000 </semantics></math>, our bounds for the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$2k$</annotation>\u0000 </semantics></math>-th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2680-2703"},"PeriodicalIF":0.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信