{"title":"p\u0000 ∞\u0000 \u0000 $p^{infty }$\u0000 -Selmer ranks of CM abelian varieties","authors":"Jamie Bell","doi":"10.1112/blms.13094","DOIUrl":"10.1112/blms.13094","url":null,"abstract":"<p>For an elliptic curve with complex multiplication over a number field, the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>p</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$p^{infty }$</annotation>\u0000 </semantics></math>-Selmer rank is even for all <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. Česnavičius proved this using the fact that <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> admits a <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-isogeny whenever <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> splits in the complex multiplication field, and invoking known cases of the <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-parity conjecture. We give a direct proof, and generalise the result to abelian varieties.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2711-2717"},"PeriodicalIF":0.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}