Gubler模型的进热带化和共性

IF 0.8 3区 数学 Q2 MATHEMATICS
Tyler Foster, Sam Payne
{"title":"Gubler模型的进热带化和共性","authors":"Tyler Foster,&nbsp;Sam Payne","doi":"10.1112/blms.70001","DOIUrl":null,"url":null,"abstract":"<p>We introduce adic tropicalizations for subschemes of toric varieties as limits of Gubler models associated to polyhedral covers of the ordinary tropicalization. Our main result shows that Huber's adic analytification of a subscheme of a toric variety is naturally isomorphic to the inverse limit of its adic tropicalizations, in the category of locally topologically ringed spaces. The key new technical idea underlying this theorem is cofinality of Gubler models, which we prove for projective schemes and also for more general compact analytic domains in closed subschemes of toric varieties. In addition, we introduce a <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-topology and structure sheaf on ordinary tropicalizations, and show that Berkovich analytifications are limits of ordinary tropicalizations in the category of topologically ringed topoi.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"809-830"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adic tropicalizations and cofinality of Gubler models\",\"authors\":\"Tyler Foster,&nbsp;Sam Payne\",\"doi\":\"10.1112/blms.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce adic tropicalizations for subschemes of toric varieties as limits of Gubler models associated to polyhedral covers of the ordinary tropicalization. Our main result shows that Huber's adic analytification of a subscheme of a toric variety is naturally isomorphic to the inverse limit of its adic tropicalizations, in the category of locally topologically ringed spaces. The key new technical idea underlying this theorem is cofinality of Gubler models, which we prove for projective schemes and also for more general compact analytic domains in closed subschemes of toric varieties. In addition, we introduce a <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-topology and structure sheaf on ordinary tropicalizations, and show that Berkovich analytifications are limits of ordinary tropicalizations in the category of topologically ringed topoi.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"809-830\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了环面品种的子格式的进热带化,作为与普通热带化的多面体覆盖相关的Gubler模型的极限。我们的主要结果表明,在局部拓扑环空间的范畴中,环变子格式的Huber进进分析自然同构于其进进热带化的逆极限。该定理的关键技术思想是Gubler模型的共性,我们证明了它可以用于投影格式,也可以用于环变的闭子格式中更一般的紧解析域。此外,我们引入了普通热带化的G$ G$ -拓扑和结构轴,并证明了Berkovich分析是拓扑环型拓扑中普通热带化的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adic tropicalizations and cofinality of Gubler models

We introduce adic tropicalizations for subschemes of toric varieties as limits of Gubler models associated to polyhedral covers of the ordinary tropicalization. Our main result shows that Huber's adic analytification of a subscheme of a toric variety is naturally isomorphic to the inverse limit of its adic tropicalizations, in the category of locally topologically ringed spaces. The key new technical idea underlying this theorem is cofinality of Gubler models, which we prove for projective schemes and also for more general compact analytic domains in closed subschemes of toric varieties. In addition, we introduce a G $G$ -topology and structure sheaf on ordinary tropicalizations, and show that Berkovich analytifications are limits of ordinary tropicalizations in the category of topologically ringed topoi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信