{"title":"泛型m$ m$角形的有限定理","authors":"Byeong Moon Kim, Dayoon Park","doi":"10.1112/blms.13217","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the universal <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-gonal forms. More precisely, we study the growth of the size of the finite set <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>m</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 1,2,\\ldots, \\gamma _m\\rbrace$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <msub>\n <mi>γ</mi>\n <mi>m</mi>\n </msub>\n <annotation>$\\gamma _m$</annotation>\n </semantics></math> asymptotically increases as <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> increases) which characterize the universality of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-gonal forms.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"625-637"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13217","citationCount":"0","resultStr":"{\"title\":\"A finiteness theorem for universal \\n \\n m\\n $m$\\n -gonal forms\",\"authors\":\"Byeong Moon Kim, Dayoon Park\",\"doi\":\"10.1112/blms.13217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the universal <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-gonal forms. More precisely, we study the growth of the size of the finite set <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>m</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 1,2,\\\\ldots, \\\\gamma _m\\\\rbrace$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>γ</mi>\\n <mi>m</mi>\\n </msub>\\n <annotation>$\\\\gamma _m$</annotation>\\n </semantics></math> asymptotically increases as <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> increases) which characterize the universality of <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-gonal forms.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 2\",\"pages\":\"625-637\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13217\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13217","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A finiteness theorem for universal
m
$m$
-gonal forms
In this paper, we study the universal -gonal forms. More precisely, we study the growth of the size of the finite set ( asymptotically increases as increases) which characterize the universality of -gonal forms.