{"title":"Minimal varieties of graded PI-algebras over abelian groups","authors":"Sebastiano Argenti, Onofrio Mario Di Vincenzo","doi":"10.1112/blms.13064","DOIUrl":"https://doi.org/10.1112/blms.13064","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math> be a field of characteristic zero and <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> a finite abelian group. In this paper, we prove that an affine variety of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-graded PI-algebras is minimal if and only if it is generated by a graded algebra <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>U</mi>\u0000 <mi>T</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>⋯</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <mo>;</mo>\u0000 <mi>γ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$UT(A_1,dots,A_m;gamma)$</annotation>\u0000 </semantics></math> of upper block triangular matrices where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>⋯</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$A_1,dots,A_m$</annotation>\u0000 </semantics></math> are finite-dimensional <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-simple algebras.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2441-2459"},"PeriodicalIF":0.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weighted Alexandrov–Fenchel type inequalities for hypersurfaces in \u0000 \u0000 \u0000 R\u0000 n\u0000 \u0000 $mathbb {R}^n$","authors":"Jie Wu","doi":"10.1112/blms.13089","DOIUrl":"10.1112/blms.13089","url":null,"abstract":"<p>In this paper, we prove the following geometric inequalities in the Euclidean space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathbb {R}^n (ngeqslant 3)$</annotation>\u0000 </semantics></math>, which are weighted Alexandrov–Fenchel type inequalities,\u0000\u0000 </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2634-2646"},"PeriodicalIF":0.8,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}