关于Erdős相似度问题在大

IF 0.9 3区 数学 Q2 MATHEMATICS
Xiang Gao, Yuveshen Mooroogen, Chi Hoi Yip
{"title":"关于Erdős相似度问题在大","authors":"Xiang Gao,&nbsp;Yuveshen Mooroogen,&nbsp;Chi Hoi Yip","doi":"10.1112/blms.70062","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, Kolountzakis and Papageorgiou ask if for every <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\epsilon \\in (0,1]$</annotation>\n </semantics></math>, there exists a set <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>⊆</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$S \\subseteq \\mathbb {R}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>S</mi>\n <mo>∩</mo>\n <mi>I</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n <annotation>$\\vert S \\cap I\\vert \\geqslant 1 - \\epsilon$</annotation>\n </semantics></math> for every interval <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>⊂</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$I \\subset \\mathbb {R}$</annotation>\n </semantics></math> with unit length, but that does not contain any affine copy of a given increasing sequence of exponential growth or faster. This question is an analog of the well-known Erdős similarity problem. In this paper, we show that for each sequence of real numbers whose integer parts form a set of positive upper Banach density, one can explicitly construct such a set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> that contains no affine copy of that sequence. Since there exist sequences of arbitrarily rapid growth that satisfy this condition, our result answers Kolountzakis and Papageorgiou's question in the affirmative. A key ingredient of our proof is a generalization of results by Amice, Kahane, and Haight from metric number theory. In addition, we construct a set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> with the required property — but with <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\epsilon \\in (1/2, 1]$</annotation>\n </semantics></math> — that contains no affine copy of <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 2^n\\rbrace$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1801-1818"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70062","citationCount":"0","resultStr":"{\"title\":\"On an Erdős similarity problem in the large\",\"authors\":\"Xiang Gao,&nbsp;Yuveshen Mooroogen,&nbsp;Chi Hoi Yip\",\"doi\":\"10.1112/blms.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent paper, Kolountzakis and Papageorgiou ask if for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\epsilon \\\\in (0,1]$</annotation>\\n </semantics></math>, there exists a set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>⊆</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$S \\\\subseteq \\\\mathbb {R}$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>S</mi>\\n <mo>∩</mo>\\n <mi>I</mi>\\n <mo>|</mo>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mi>ε</mi>\\n </mrow>\\n <annotation>$\\\\vert S \\\\cap I\\\\vert \\\\geqslant 1 - \\\\epsilon$</annotation>\\n </semantics></math> for every interval <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>⊂</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$I \\\\subset \\\\mathbb {R}$</annotation>\\n </semantics></math> with unit length, but that does not contain any affine copy of a given increasing sequence of exponential growth or faster. This question is an analog of the well-known Erdős similarity problem. In this paper, we show that for each sequence of real numbers whose integer parts form a set of positive upper Banach density, one can explicitly construct such a set <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> that contains no affine copy of that sequence. Since there exist sequences of arbitrarily rapid growth that satisfy this condition, our result answers Kolountzakis and Papageorgiou's question in the affirmative. A key ingredient of our proof is a generalization of results by Amice, Kahane, and Haight from metric number theory. In addition, we construct a set <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> with the required property — but with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\epsilon \\\\in (1/2, 1]$</annotation>\\n </semantics></math> — that contains no affine copy of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace 2^n\\\\rbrace$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1801-1818\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70062\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70062\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70062","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,Kolountzakis和Papageorgiou问,对于每一个ε∈(0,1]$\epsilon \in (0,1]$,存在一个集S≤$S \subseteq \mathbb {R}$,使得| S∩I |≥1 - ε $\vert S \cap I\vert \geqslant 1 - \epsilon$每个区间I∧R $I \subset \mathbb {R}$都有单位长度,但它不包含任何给定的指数增长或更快增长序列的仿射副本。这个问题类似于众所周知的Erdős相似性问题。在本文中,我们证明了对于每一个实数序列,其整数部分构成正上巴拿赫密度集,可以显式构造这样一个集S $S$,它不包含该序列的仿射副本。由于存在满足这个条件的任意快速增长序列,我们的结果肯定地回答了Kolountzakis和Papageorgiou的问题。我们证明的一个关键要素是Amice, Kahane和Haight从度量数论中得到的结果的推广。此外,我们构造了一个集S $S$,它具有所需的性质-但ε∈(1 / 2,1]$\epsilon \in (1/2, 1]$ -它不包含{2n}的仿射副本$\lbrace 2^n\rbrace$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On an Erdős similarity problem in the large

On an Erdős similarity problem in the large

On an Erdős similarity problem in the large

On an Erdős similarity problem in the large

In a recent paper, Kolountzakis and Papageorgiou ask if for every ε ( 0 , 1 ] $\epsilon \in (0,1]$ , there exists a set S R $S \subseteq \mathbb {R}$ such that | S I | 1 ε $\vert S \cap I\vert \geqslant 1 - \epsilon$ for every interval I R $I \subset \mathbb {R}$ with unit length, but that does not contain any affine copy of a given increasing sequence of exponential growth or faster. This question is an analog of the well-known Erdős similarity problem. In this paper, we show that for each sequence of real numbers whose integer parts form a set of positive upper Banach density, one can explicitly construct such a set S $S$ that contains no affine copy of that sequence. Since there exist sequences of arbitrarily rapid growth that satisfy this condition, our result answers Kolountzakis and Papageorgiou's question in the affirmative. A key ingredient of our proof is a generalization of results by Amice, Kahane, and Haight from metric number theory. In addition, we construct a set S $S$ with the required property — but with ε ( 1 / 2 , 1 ] $\epsilon \in (1/2, 1]$ — that contains no affine copy of { 2 n } $\lbrace 2^n\rbrace$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信