Smallest totient in a residue class

IF 0.8 3区 数学 Q2 MATHEMATICS
Abhishek Jha
{"title":"Smallest totient in a residue class","authors":"Abhishek Jha","doi":"10.1112/blms.70069","DOIUrl":null,"url":null,"abstract":"<p>We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(m,a)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is odd, there exists <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$n\\leqslant m^{2+o(1)}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n <mo>≡</mo>\n <mi>a</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>mod</mi>\n <mspace></mspace>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi (n)\\equiv a\\ (\\mathrm{mod}\\ m)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1908-1917"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70069","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers ( m , a ) $(m,a)$ such that m $m$ is odd, there exists n m 2 + o ( 1 ) $n\leqslant m^{2+o(1)}$ such that φ ( n ) a ( mod m ) $\varphi (n)\equiv a\ (\mathrm{mod}\ m)$ .

剩余类中的最小对象
我们得到了等差数列中林尼克定理的一个完整的类比。具体来说,对于任意正整数对(m, a) $(m,a)$且m $m$为奇数,存在n≤m 2 + o (1) $n\leqslant m^{2+o(1)}$使得φ (n)≡a(对m取模)$\varphi (n)\equiv a\ (\mathrm{mod}\ m)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信