{"title":"Smallest totient in a residue class","authors":"Abhishek Jha","doi":"10.1112/blms.70069","DOIUrl":null,"url":null,"abstract":"<p>We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(m,a)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is odd, there exists <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$n\\leqslant m^{2+o(1)}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n <mo>≡</mo>\n <mi>a</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>mod</mi>\n <mspace></mspace>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi (n)\\equiv a\\ (\\mathrm{mod}\\ m)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1908-1917"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70069","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers such that is odd, there exists such that .