On an Erdős similarity problem in the large

IF 0.8 3区 数学 Q2 MATHEMATICS
Xiang Gao, Yuveshen Mooroogen, Chi Hoi Yip
{"title":"On an Erdős similarity problem in the large","authors":"Xiang Gao,&nbsp;Yuveshen Mooroogen,&nbsp;Chi Hoi Yip","doi":"10.1112/blms.70062","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, Kolountzakis and Papageorgiou ask if for every <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\epsilon \\in (0,1]$</annotation>\n </semantics></math>, there exists a set <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>⊆</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$S \\subseteq \\mathbb {R}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>S</mi>\n <mo>∩</mo>\n <mi>I</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n <annotation>$\\vert S \\cap I\\vert \\geqslant 1 - \\epsilon$</annotation>\n </semantics></math> for every interval <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>⊂</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$I \\subset \\mathbb {R}$</annotation>\n </semantics></math> with unit length, but that does not contain any affine copy of a given increasing sequence of exponential growth or faster. This question is an analog of the well-known Erdős similarity problem. In this paper, we show that for each sequence of real numbers whose integer parts form a set of positive upper Banach density, one can explicitly construct such a set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> that contains no affine copy of that sequence. Since there exist sequences of arbitrarily rapid growth that satisfy this condition, our result answers Kolountzakis and Papageorgiou's question in the affirmative. A key ingredient of our proof is a generalization of results by Amice, Kahane, and Haight from metric number theory. In addition, we construct a set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> with the required property — but with <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\epsilon \\in (1/2, 1]$</annotation>\n </semantics></math> — that contains no affine copy of <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 2^n\\rbrace$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1801-1818"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70062","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent paper, Kolountzakis and Papageorgiou ask if for every ε ( 0 , 1 ] $\epsilon \in (0,1]$ , there exists a set S R $S \subseteq \mathbb {R}$ such that | S I | 1 ε $\vert S \cap I\vert \geqslant 1 - \epsilon$ for every interval I R $I \subset \mathbb {R}$ with unit length, but that does not contain any affine copy of a given increasing sequence of exponential growth or faster. This question is an analog of the well-known Erdős similarity problem. In this paper, we show that for each sequence of real numbers whose integer parts form a set of positive upper Banach density, one can explicitly construct such a set S $S$ that contains no affine copy of that sequence. Since there exist sequences of arbitrarily rapid growth that satisfy this condition, our result answers Kolountzakis and Papageorgiou's question in the affirmative. A key ingredient of our proof is a generalization of results by Amice, Kahane, and Haight from metric number theory. In addition, we construct a set S $S$ with the required property — but with ε ( 1 / 2 , 1 ] $\epsilon \in (1/2, 1]$ — that contains no affine copy of { 2 n } $\lbrace 2^n\rbrace$ .

关于Erdős相似度问题在大
在最近的一篇论文中,Kolountzakis和Papageorgiou问,对于每一个ε∈(0,1]$\epsilon \in (0,1]$,存在一个集S≤$S \subseteq \mathbb {R}$,使得| S∩I |≥1 - ε $\vert S \cap I\vert \geqslant 1 - \epsilon$每个区间I∧R $I \subset \mathbb {R}$都有单位长度,但它不包含任何给定的指数增长或更快增长序列的仿射副本。这个问题类似于众所周知的Erdős相似性问题。在本文中,我们证明了对于每一个实数序列,其整数部分构成正上巴拿赫密度集,可以显式构造这样一个集S $S$,它不包含该序列的仿射副本。由于存在满足这个条件的任意快速增长序列,我们的结果肯定地回答了Kolountzakis和Papageorgiou的问题。我们证明的一个关键要素是Amice, Kahane和Haight从度量数论中得到的结果的推广。此外,我们构造了一个集S $S$,它具有所需的性质-但ε∈(1 / 2,1]$\epsilon \in (1/2, 1]$ -它不包含{2n}的仿射副本$\lbrace 2^n\rbrace$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信