The small-scale limit of magnitude and the one-point property

IF 0.8 3区 数学 Q2 MATHEMATICS
Emily Roff, Masahiko Yoshinaga
{"title":"The small-scale limit of magnitude and the one-point property","authors":"Emily Roff,&nbsp;Masahiko Yoshinaga","doi":"10.1112/blms.70064","DOIUrl":null,"url":null,"abstract":"<p>The magnitude of a metric space is a real-valued function whose parameter controls the scale of the metric. A metric space is said to have the <i>one-point property</i> if its magnitude converges to 1 as the space is scaled down to a point. Not every finite metric space has the one-point property: to date, exactly one example has been found of a finite space for which the property fails. Understanding the failure of the one-point property is of interest in clarifying the interpretation of magnitude and its stability with respect to the Gromov–Hausdorff topology. We prove that the one-point property holds generically for finite metric spaces, but that when it fails, the failure can be arbitrarily bad: the small-scale limit of magnitude can take arbitrary real values greater than 1.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1841-1855"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70064","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The magnitude of a metric space is a real-valued function whose parameter controls the scale of the metric. A metric space is said to have the one-point property if its magnitude converges to 1 as the space is scaled down to a point. Not every finite metric space has the one-point property: to date, exactly one example has been found of a finite space for which the property fails. Understanding the failure of the one-point property is of interest in clarifying the interpretation of magnitude and its stability with respect to the Gromov–Hausdorff topology. We prove that the one-point property holds generically for finite metric spaces, but that when it fails, the failure can be arbitrarily bad: the small-scale limit of magnitude can take arbitrary real values greater than 1.

震级的小尺度极限和一点性质
度量空间的大小是一个实值函数,其参数控制度量的尺度。当一个度量空间被缩小到一个点时,如果它的大小收敛于1,我们就说它具有一点性质。并非所有有限度量空间都具有单点性质:到目前为止,只发现了一个有限空间不具备该性质的例子。理解单点性质的失效对于解释相对于Gromov-Hausdorff拓扑的大小及其稳定性是有意义的。我们证明了单点性质对于有限度量空间是一般成立的,但是当它失效时,失效可以是任意的:量级的小尺度极限可以取任意大于1的实值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信