Geometric invariant theory for G a ⋊ G m $\mathbb {G}_a\rtimes \mathbb {G}_m$

IF 0.9 3区 数学 Q2 MATHEMATICS
Yikun Qiao
{"title":"Geometric invariant theory for \n \n \n \n G\n a\n \n ⋊\n \n G\n m\n \n \n $\\mathbb {G}_a\\rtimes \\mathbb {G}_m$","authors":"Yikun Qiao","doi":"10.1112/blms.70065","DOIUrl":null,"url":null,"abstract":"<p>We study geometric invariant theory for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>a</mi>\n </msub>\n <msub>\n <mo>⋊</mo>\n <mi>d</mi>\n </msub>\n <msub>\n <mi>G</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbb {G}_a\\rtimes _d\\mathbb {G}_m$</annotation>\n </semantics></math> over characteristic zero. For a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>a</mi>\n </msub>\n <msub>\n <mo>⋊</mo>\n <mi>d</mi>\n </msub>\n <msub>\n <mi>G</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbb {G}_a\\rtimes _d\\mathbb {G}_m$</annotation>\n </semantics></math>-action on a variety <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> in suitable case, we provide an equivariant birational modification <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>:</mo>\n <msup>\n <mi>C</mi>\n <mo>′</mo>\n </msup>\n <mo>→</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$p:C^{\\prime }\\rightarrow C$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mo>′</mo>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>C</mi>\n <mo>′</mo>\n </msup>\n <mo>/</mo>\n <msub>\n <mi>G</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation>$C^{\\prime }\\rightarrow C^{\\prime }/\\mathbb {G}_a$</annotation>\n </semantics></math> is a principal bundle. The situation covers quotients of unstable strata of any linear <span></span><math>\n <semantics>\n <msub>\n <mi>SL</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathrm{SL}_2$</annotation>\n </semantics></math>-action.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1856-1884"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70065","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study geometric invariant theory for G a d G m $\mathbb {G}_a\rtimes _d\mathbb {G}_m$ over characteristic zero. For a G a d G m $\mathbb {G}_a\rtimes _d\mathbb {G}_m$ -action on a variety C $C$ in suitable case, we provide an equivariant birational modification p : C C $p:C^{\prime }\rightarrow C$ such that C C / G a $C^{\prime }\rightarrow C^{\prime }/\mathbb {G}_a$ is a principal bundle. The situation covers quotients of unstable strata of any linear SL 2 $\mathrm{SL}_2$ -action.

Abstract Image

Abstract Image

Abstract Image

G - a - G - m$ \mathbb {G}_a\r乘以\mathbb {G}_m$的几何不变量理论
我们研究了G a d G m$ \mathbb {G}_a\r乘以d\mathbb {G}_m$在特征零上的几何不变理论。在合适的情况下,对于G a d G m \mathbb {G}_a\ rx乘以d\mathbb {G}_m$ -作用于C$ C$,我们提供了一个等变双元修正p:C ‘→C$ p:C^{\ ’}\右C$使得C ‘→C ’ / G a$C^{\prime}\右row C^{\prime}/\mathbb {G}_a$是一个主束。这种情况涵盖了任意线性SL 2$ \ mathm {SL}_2$ -作用的不稳定层商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信