Removing scalar curvature assumption for Ricci flow smoothing

IF 0.9 3区 数学 Q2 MATHEMATICS
Adam Martens
{"title":"Removing scalar curvature assumption for Ricci flow smoothing","authors":"Adam Martens","doi":"10.1112/blms.70073","DOIUrl":null,"url":null,"abstract":"<p>In recent work of Chan–Huang–Lee, it is shown that if a manifold enjoys uniform bounds on (a) the negative part of the scalar curvature, (b) the local entropy, and (c) volume ratios up to a fixed scale, then there exists a Ricci flow for some definite time with estimates on the solution assuming that the local curvature concentration is small enough initially (depending only on these a priori bounds). In this work, we show that the bound on scalar curvature assumption (a) is redundant. We also give some applications of this quantitative short-time existence, including a Ricci flow smoothing result for measure space limits, a Gromov–Hausdorff compactness result, and a topological and geometric rigidity result in the case that the a priori local bounds are strengthened to be global.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1968-1989"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70073","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent work of Chan–Huang–Lee, it is shown that if a manifold enjoys uniform bounds on (a) the negative part of the scalar curvature, (b) the local entropy, and (c) volume ratios up to a fixed scale, then there exists a Ricci flow for some definite time with estimates on the solution assuming that the local curvature concentration is small enough initially (depending only on these a priori bounds). In this work, we show that the bound on scalar curvature assumption (a) is redundant. We also give some applications of this quantitative short-time existence, including a Ricci flow smoothing result for measure space limits, a Gromov–Hausdorff compactness result, and a topological and geometric rigidity result in the case that the a priori local bounds are strengthened to be global.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

去除Ricci流平滑的标量曲率假设
在Chan-Huang-Lee最近的工作中,证明了如果流形在(a)标量曲率的负部分,(b)局部熵和(c)体积比达到固定尺度上具有一致的界,那么存在一个确定时间的Ricci流,并且假设局部曲率浓度最初足够小(仅依赖于这些先验界),对解有估计。在这项工作中,我们证明了标量曲率假设(a)的界是冗余的。我们也给这个定量短期存在的一些应用程序,包括瑞奇流平滑结果测度空间限制,一个Gromov-Hausdorff密实度的结果,和拓扑和几何刚度导致的先天的地方范围加强全球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信