{"title":"矩阵乘积的特征值","authors":"Richard Kenyon, Nicholas Ovenhouse","doi":"10.1112/blms.70071","DOIUrl":null,"url":null,"abstract":"<p>We study pairs of matrices <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>∈</mo>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$A,B\\in \\mathrm{GL}_n({\\mathbb {C}})$</annotation>\n </semantics></math> such that the eigenvalues of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>, of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> and of the product <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>B</mi>\n </mrow>\n <annotation>$AB$</annotation>\n </semantics></math> are specified in advance. We show that the space of such pairs <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(A,B)$</annotation>\n </semantics></math> under simultaneous conjugation has dimension <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-1)(n-2)$</annotation>\n </semantics></math>, and give an explicit parameterization. More generally, let <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> be a surface of genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> punctures. We find a parameterization of the space <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\Omega _{g,k,n}$</annotation>\n </semantics></math> of flat <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{GL}_n({\\mathbb {C}})$</annotation>\n </semantics></math>-structures on <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> whose holonomies around the punctures have prescribed eigenvalues. We show furthermore that, for <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n <mi>g</mi>\n <mo>+</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$3\\leqslant k\\leqslant 2g+6$</annotation>\n </semantics></math> (or <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mn>9</mn>\n </mrow>\n <annotation>$3\\leqslant k\\leqslant 9$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$g=1$</annotation>\n </semantics></math>, or <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n </mrow>\n <annotation>$3\\leqslant k$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$g=0$</annotation>\n </semantics></math>), the space <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\Omega _{g,k,n}$</annotation>\n </semantics></math> has an explicit symplectic structure and an associated Liouville integrable system, equivalent to a leaf of a Goncharov–Kenyon dimer integrable system.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1938-1951"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalues of matrix products\",\"authors\":\"Richard Kenyon, Nicholas Ovenhouse\",\"doi\":\"10.1112/blms.70071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study pairs of matrices <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>GL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$A,B\\\\in \\\\mathrm{GL}_n({\\\\mathbb {C}})$</annotation>\\n </semantics></math> such that the eigenvalues of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>, of <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> and of the product <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$AB$</annotation>\\n </semantics></math> are specified in advance. We show that the space of such pairs <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(A,B)$</annotation>\\n </semantics></math> under simultaneous conjugation has dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n-1)(n-2)$</annotation>\\n </semantics></math>, and give an explicit parameterization. More generally, let <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> be a surface of genus <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> punctures. We find a parameterization of the space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\Omega _{g,k,n}$</annotation>\\n </semantics></math> of flat <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>GL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{GL}_n({\\\\mathbb {C}})$</annotation>\\n </semantics></math>-structures on <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> whose holonomies around the punctures have prescribed eigenvalues. We show furthermore that, for <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <mn>2</mn>\\n <mi>g</mi>\\n <mo>+</mo>\\n <mn>6</mn>\\n </mrow>\\n <annotation>$3\\\\leqslant k\\\\leqslant 2g+6$</annotation>\\n </semantics></math> (or <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <mn>9</mn>\\n </mrow>\\n <annotation>$3\\\\leqslant k\\\\leqslant 9$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$g=1$</annotation>\\n </semantics></math>, or <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$3\\\\leqslant k$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$g=0$</annotation>\\n </semantics></math>), the space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\Omega _{g,k,n}$</annotation>\\n </semantics></math> has an explicit symplectic structure and an associated Liouville integrable system, equivalent to a leaf of a Goncharov–Kenyon dimer integrable system.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"1938-1951\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study pairs of matrices such that the eigenvalues of , of and of the product are specified in advance. We show that the space of such pairs under simultaneous conjugation has dimension , and give an explicit parameterization. More generally, let be a surface of genus with punctures. We find a parameterization of the space of flat -structures on whose holonomies around the punctures have prescribed eigenvalues. We show furthermore that, for (or if , or if ), the space has an explicit symplectic structure and an associated Liouville integrable system, equivalent to a leaf of a Goncharov–Kenyon dimer integrable system.