Eigenvalues of matrix products

IF 0.9 3区 数学 Q2 MATHEMATICS
Richard Kenyon, Nicholas Ovenhouse
{"title":"Eigenvalues of matrix products","authors":"Richard Kenyon,&nbsp;Nicholas Ovenhouse","doi":"10.1112/blms.70071","DOIUrl":null,"url":null,"abstract":"<p>We study pairs of matrices <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>∈</mo>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$A,B\\in \\mathrm{GL}_n({\\mathbb {C}})$</annotation>\n </semantics></math> such that the eigenvalues of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>, of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> and of the product <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>B</mi>\n </mrow>\n <annotation>$AB$</annotation>\n </semantics></math> are specified in advance. We show that the space of such pairs <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(A,B)$</annotation>\n </semantics></math> under simultaneous conjugation has dimension <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-1)(n-2)$</annotation>\n </semantics></math>, and give an explicit parameterization. More generally, let <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> be a surface of genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> punctures. We find a parameterization of the space <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\Omega _{g,k,n}$</annotation>\n </semantics></math> of flat <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>GL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{GL}_n({\\mathbb {C}})$</annotation>\n </semantics></math>-structures on <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> whose holonomies around the punctures have prescribed eigenvalues. We show furthermore that, for <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n <mi>g</mi>\n <mo>+</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$3\\leqslant k\\leqslant 2g+6$</annotation>\n </semantics></math> (or <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mn>9</mn>\n </mrow>\n <annotation>$3\\leqslant k\\leqslant 9$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$g=1$</annotation>\n </semantics></math>, or <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n </mrow>\n <annotation>$3\\leqslant k$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$g=0$</annotation>\n </semantics></math>), the space <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\Omega _{g,k,n}$</annotation>\n </semantics></math> has an explicit symplectic structure and an associated Liouville integrable system, equivalent to a leaf of a Goncharov–Kenyon dimer integrable system.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1938-1951"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study pairs of matrices A , B GL n ( C ) $A,B\in \mathrm{GL}_n({\mathbb {C}})$ such that the eigenvalues of A $A$ , of B $B$ and of the product A B $AB$ are specified in advance. We show that the space of such pairs ( A , B ) $(A,B)$ under simultaneous conjugation has dimension ( n 1 ) ( n 2 ) $(n-1)(n-2)$ , and give an explicit parameterization. More generally, let Σ $\Sigma$ be a surface of genus g $g$ with k $k$ punctures. We find a parameterization of the space Ω g , k , n $\Omega _{g,k,n}$ of flat GL n ( C ) $\mathrm{GL}_n({\mathbb {C}})$ -structures on Σ $\Sigma$ whose holonomies around the punctures have prescribed eigenvalues. We show furthermore that, for 3 k 2 g + 6 $3\leqslant k\leqslant 2g+6$ (or 3 k 9 $3\leqslant k\leqslant 9$ if g = 1 $g=1$ , or 3 k $3\leqslant k$ if g = 0 $g=0$ ), the space Ω g , k , n $\Omega _{g,k,n}$ has an explicit symplectic structure and an associated Liouville integrable system, equivalent to a leaf of a Goncharov–Kenyon dimer integrable system.

Abstract Image

Abstract Image

Abstract Image

矩阵乘积的特征值
我们研究矩阵A, B∈GL n (C) $A,B\in \mathrm{GL}_n({\mathbb {C}})$对,使得A的特征值$A$,提前确定产品B $B$和产品A B $AB$的规格。我们证明了这样的对(A,B) $(A,B)$在同时共轭下具有维数(n−1)(n−2)$(n-1)(n-2)$,并给出了一个显式参数化。更一般地说,设Σ $\Sigma$是一个有k个$k$点的g $g$属曲面。我们找到了空间的参数化Ω g, k,平面GL的n $\Omega _{g,k,n}$ n (C) $\mathrm{GL}_n({\mathbb {C}})$ -在Σ $\Sigma$上的结构,其全域围绕穿孔有规定的特征值。我们进一步证明,对于3≤k≤2g + 6 $3\leqslant k\leqslant 2g+6$(或3≤k≤9 $3\leqslant k\leqslant 9$,如果g =1 $g=1$,或3≥k $3\leqslant k$(如果g = 0 $g=0$),空间Ω g,k, n $\Omega _{g,k,n}$具有显式辛结构和相应的Liouville可积系统,相当于Goncharov-Kenyon二聚体可积系统的一个叶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信