{"title":"Smooth structures on nonorientable 4-manifolds via twisting operations","authors":"Valentina Bais, Rafael Torres","doi":"10.1112/blms.70060","DOIUrl":"10.1112/blms.70060","url":null,"abstract":"<p>Five observations compose the main results of this note. The first records the existence of a smoothly embedded 2-sphere <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> inside <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>×</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {R}P^2times S^2$</annotation>\u0000 </semantics></math> such that performing a Gluck twist on <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> produces a manifold <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> that is homeomorphic but not diffeomorphic to the total space of the nontrivial 2-sphere bundle over the real projective plane <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>γ</mi>\u0000 <mi>⊕</mi>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$S(2gamma oplus mathbb {R})$</annotation>\u0000 </semantics></math>. The second observation is that there is a 5-dimensional cobordism with a single 2-handle between the 4-manifold <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> and a mapping torus that was used by Cappell–Shaneson to construct an exotic <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>4</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {R}P^4$</annotation>\u0000 </semantics></math>. This construction of <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> is similar to the one of the Cappell–Shaneson homotopy 4-spheres. The third observation is that twisting an embedded real projective plane inside <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> produces a manifold that is homeomorphic but not diffeomorphic to the circle su","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1768-1790"},"PeriodicalIF":0.9,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct and inverse spectral problems for the Schrödinger operator with double generalized Regge boundary conditions","authors":"Xiao-Chuan Xu, Yu-Ting Huang","doi":"10.1112/blms.70054","DOIUrl":"10.1112/blms.70054","url":null,"abstract":"<p>In this paper, we study the direct and inverse spectral problems for the Schrödinger operator with two generalized Regge boundary conditions. For the direct problem, we give the properties of the spectrum, including the asymptotic distribution of the eigenvalues. For the inverse problems, we prove several uniqueness theorems, including the cases: even potential, two-spectra, as well as the general partial inverse problem.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1671-1690"},"PeriodicalIF":0.9,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stéphane Charpentier, Nicolas Espoullier, Rachid Zarouf
{"title":"Bloch functions with wild boundary behavior in \u0000 \u0000 \u0000 C\u0000 N\u0000 \u0000 ${mathbb {C}}^N$","authors":"Stéphane Charpentier, Nicolas Espoullier, Rachid Zarouf","doi":"10.1112/blms.70055","DOIUrl":"10.1112/blms.70055","url":null,"abstract":"<p>We prove the existence of functions <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> in the Bloch space of the unit ball <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 <annotation>${mathbb {B}}_N$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>N</mi>\u0000 </msup>\u0000 <annotation>${mathbb {C}}^N$</annotation>\u0000 </semantics></math> with the property that, given any measurable function <span></span><math>\u0000 <semantics>\u0000 <mi>φ</mi>\u0000 <annotation>$varphi$</annotation>\u0000 </semantics></math> on the unit sphere <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 <annotation>${mathbb {S}}_N$</annotation>\u0000 </semantics></math>, there exists a sequence <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>r</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$(r_n)_n$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>r</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$r_nin (0,1)$</annotation>\u0000 </semantics></math>, converging to 1, such that for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>w</mi>\u0000 <mo>∈</mo>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$win {mathbb {B}}_N$</annotation>\u0000 </semantics></math>,\u0000\u0000 </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1691-1707"},"PeriodicalIF":0.9,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}