{"title":"Cross-ratio degrees and triangulations","authors":"Rob Silversmith","doi":"10.1112/blms.13148","DOIUrl":"https://doi.org/10.1112/blms.13148","url":null,"abstract":"<p>The cross-ratio degree problem counts configurations of <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> points on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathbb {P}^1$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$n-3$</annotation>\u0000 </semantics></math> prescribed cross-ratios. Cross-ratio degrees arise in many corners of combinatorics and geometry, but their structure is not well-understood in general. Interestingly, examining various special cases of the problem can yield combinatorial structures that are both diverse and rich. In this paper, we prove a simple closed formula for a class of cross-ratio degrees indexed by triangulations of an <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-gon; these degrees are connected to the geometry of the real locus of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$M_{0,n}$</annotation>\u0000 </semantics></math>, and to positive geometry.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3518-3529"},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on limiting Calderon–Zygmund theory for transformed \u0000 \u0000 n\u0000 $n$\u0000 -Laplace systems in divergence form","authors":"Dorian Martino, Armin Schikorra","doi":"10.1112/blms.13147","DOIUrl":"https://doi.org/10.1112/blms.13147","url":null,"abstract":"<p>We consider rotated <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-Laplace systems on the unit ball <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$B_1 subset mathbb {R}^n$</annotation>\u0000 </semantics></math> of the form\u0000\u0000 </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3502-3517"},"PeriodicalIF":0.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}