{"title":"The Turán number of surfaces","authors":"Maya Sankar","doi":"10.1112/blms.13167","DOIUrl":"https://doi.org/10.1112/blms.13167","url":null,"abstract":"<p>We show that there is a constant <span></span><math>\u0000 <semantics>\u0000 <mi>c</mi>\u0000 <annotation>$c$</annotation>\u0000 </semantics></math> such that any 3-uniform hypergraph <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>${mathcal {H}}$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> vertices and at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <msup>\u0000 <mi>n</mi>\u0000 <mrow>\u0000 <mn>5</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$cn^{5/2}$</annotation>\u0000 </semantics></math> edges contains a triangulation of the real projective plane as a subgraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon and Zakharov. Furthermore, our work, combined with prior results, asymptotically determines the Turán number of all surfaces.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3786-3800"},"PeriodicalIF":0.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}