{"title":"On completely multiplicative \n \n \n ±\n 1\n \n $\\pm 1$\n sequences that omit many consecutive \n \n \n +\n 1\n \n $+1$\n values","authors":"Yichen You","doi":"10.1112/blms.70056","DOIUrl":null,"url":null,"abstract":"<p>We say that <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\pm 1$</annotation>\n </semantics></math>-valued completely multiplicative functions are <i>length-</i><span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> <i>functions</i> <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> if they take the value <span></span><math>\n <semantics>\n <mrow>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$+1$</annotation>\n </semantics></math> at at most <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> consecutive integers. We introduce a method to extend the length of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length-<span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> functions systematically for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$k\\geqslant 4$</annotation>\n </semantics></math> which generalizes the work of Schur for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k = 2$</annotation>\n </semantics></math> and Hudson for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$k =3$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1708-1717"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We say that -valued completely multiplicative functions are length-functions if they take the value at at most consecutive integers. We introduce a method to extend the length of using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length- functions systematically for which generalizes the work of Schur for and Hudson for .