Stéphane Charpentier, Nicolas Espoullier, Rachid Zarouf
{"title":"C ${\\mathbb {C}}^N$","authors":"Stéphane Charpentier, Nicolas Espoullier, Rachid Zarouf","doi":"10.1112/blms.70055","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of functions <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> in the Bloch space of the unit ball <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mi>N</mi>\n </msub>\n <annotation>${\\mathbb {B}}_N$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>N</mi>\n </msup>\n <annotation>${\\mathbb {C}}^N$</annotation>\n </semantics></math> with the property that, given any measurable function <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> on the unit sphere <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>N</mi>\n </msub>\n <annotation>${\\mathbb {S}}_N$</annotation>\n </semantics></math>, there exists a sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>r</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n </msub>\n <annotation>$(r_n)_n$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>n</mi>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$r_n\\in (0,1)$</annotation>\n </semantics></math>, converging to 1, such that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n <mo>∈</mo>\n <msub>\n <mi>B</mi>\n <mi>N</mi>\n </msub>\n </mrow>\n <annotation>$w\\in {\\mathbb {B}}_N$</annotation>\n </semantics></math>,\n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1691-1707"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloch functions with wild boundary behavior in \\n \\n \\n C\\n N\\n \\n ${\\\\mathbb {C}}^N$\",\"authors\":\"Stéphane Charpentier, Nicolas Espoullier, Rachid Zarouf\",\"doi\":\"10.1112/blms.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of functions <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> in the Bloch space of the unit ball <span></span><math>\\n <semantics>\\n <msub>\\n <mi>B</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>${\\\\mathbb {B}}_N$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>N</mi>\\n </msup>\\n <annotation>${\\\\mathbb {C}}^N$</annotation>\\n </semantics></math> with the property that, given any measurable function <span></span><math>\\n <semantics>\\n <mi>φ</mi>\\n <annotation>$\\\\varphi$</annotation>\\n </semantics></math> on the unit sphere <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>${\\\\mathbb {S}}_N$</annotation>\\n </semantics></math>, there exists a sequence <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>r</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mi>n</mi>\\n </msub>\\n <annotation>$(r_n)_n$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>∈</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$r_n\\\\in (0,1)$</annotation>\\n </semantics></math>, converging to 1, such that for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>N</mi>\\n </msub>\\n </mrow>\\n <annotation>$w\\\\in {\\\\mathbb {B}}_N$</annotation>\\n </semantics></math>,\\n\\n </p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1691-1707\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70055\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bloch functions with wild boundary behavior in
C
N
${\mathbb {C}}^N$
We prove the existence of functions in the Bloch space of the unit ball of with the property that, given any measurable function on the unit sphere , there exists a sequence , , converging to 1, such that for every ,