On Lev's periodicity conjecture

IF 0.8 3区 数学 Q2 MATHEMATICS
Christian Reiher
{"title":"On Lev's periodicity conjecture","authors":"Christian Reiher","doi":"10.1112/blms.70043","DOIUrl":null,"url":null,"abstract":"<p>We classify the sum-free subsets of <span></span><math>\n <semantics>\n <msubsup>\n <mi>F</mi>\n <mn>3</mn>\n <mi>n</mi>\n </msubsup>\n <annotation>${\\mathbb {F}}_3^n$</annotation>\n </semantics></math> whose density exceeds <span></span><math>\n <semantics>\n <mfrac>\n <mn>1</mn>\n <mn>6</mn>\n </mfrac>\n <annotation>$\\frac{1}{6}$</annotation>\n </semantics></math>. This yields a resolution of Vsevolod Lev's periodicity conjecture, which asserts that if a sum-free subset <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msubsup>\n <mi>F</mi>\n <mn>3</mn>\n <mi>n</mi>\n </msubsup>\n </mrow>\n <annotation>${A\\subseteq {\\mathbb {F}}_3^n}$</annotation>\n </semantics></math> is maximal with respect to inclusion and aperiodic (in the sense that there is no non-zero vector <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>+</mo>\n <mi>v</mi>\n <mo>=</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$A+v=A$</annotation>\n </semantics></math>), then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n <mo>⩽</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>3</mn>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$|A|\\leqslant \\frac{1}{2}(3^{n-1}+1)$</annotation>\n </semantics></math>—a bound known to be optimal if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≠</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ne 2$</annotation>\n </semantics></math>, while for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math> there are no such sets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1496-1511"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We classify the sum-free subsets of F 3 n ${\mathbb {F}}_3^n$ whose density exceeds  1 6 $\frac{1}{6}$ . This yields a resolution of Vsevolod Lev's periodicity conjecture, which asserts that if a sum-free subset  A F 3 n ${A\subseteq {\mathbb {F}}_3^n}$ is maximal with respect to inclusion and aperiodic (in the sense that there is no non-zero vector  v $v$ satisfying A + v = A $A+v=A$ ), then | A | 1 2 ( 3 n 1 + 1 ) $|A|\leqslant \frac{1}{2}(3^{n-1}+1)$ —a bound known to be optimal if n 2 $n\ne 2$ , while for n = 2 $n=2$ there are no such sets.

关于列夫的周期性猜想
我们对密度超过16 $\frac{1}{6}$的f3n ${\mathbb {F}}_3^n$的无和子集进行了分类。这就解决了列夫的周期性猜想,它断言,如果一个无和的子集a≠F 3n ${A\subseteq {\mathbb {F}}_3^n}$在包含和非周期(即不存在非零向量v $v$满足?A + v = A $A+v=A$),然后| A |≥1 2 (3 n−1)+ 1) $|A|\leqslant \frac{1}{2}(3^{n-1}+1)$ -当n≠2时已知的最优界$n\ne 2$,而对于n = 2 $n=2$,不存在这样的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信