有限支撑元的NY紧空间的类及相关类

IF 0.9 3区 数学 Q2 MATHEMATICS
Antonio Avilés, Mikołaj Krupski
{"title":"有限支撑元的NY紧空间的类及相关类","authors":"Antonio Avilés,&nbsp;Mikołaj Krupski","doi":"10.1112/blms.70058","DOIUrl":null,"url":null,"abstract":"<p>We prove that a compact space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> embeds into a <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product of compact metrizable spaces (<span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product of intervals) if and only if <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> has a nonempty relative open second countable subset. This provides novel characterizations of <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math>-Corson and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$NY$</annotation>\n </semantics></math> compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, the property of being <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$NY$</annotation>\n </semantics></math> compact is determined by the topological structure of the space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_p(K)$</annotation>\n </semantics></math> of continuous real-valued functions of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1729-1748"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the class of NY compact spaces of finitely supported elements and related classes\",\"authors\":\"Antonio Avilés,&nbsp;Mikołaj Krupski\",\"doi\":\"10.1112/blms.70058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that a compact space <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> embeds into a <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math>-product of compact metrizable spaces (<span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math>-product of intervals) if and only if <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> has a nonempty relative open second countable subset. This provides novel characterizations of <span></span><math>\\n <semantics>\\n <mi>ω</mi>\\n <annotation>$\\\\omega$</annotation>\\n </semantics></math>-Corson and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$NY$</annotation>\\n </semantics></math> compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math>-product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, the property of being <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$NY$</annotation>\\n </semantics></math> compact is determined by the topological structure of the space <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mi>p</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_p(K)$</annotation>\\n </semantics></math> of continuous real-valued functions of <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1729-1748\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70058\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明紧化空间K $K$嵌入紧化可度量空间的σ $\sigma$ -积(σ $\sigma$ -间隔积)当且仅当K $K$是(强可数维数)遗传的metalindelöf,并且是的每一个子空间K $K$有一个非空的相对开放第二可数子集。这提供了ω $\omega$ -Corson和ny $NY$紧空间的新表征。我们给出了一个均匀的Eberlein紧化空间的例子,它没有嵌入紧化度量空间的积中,以至于σ $\sigma$ -积在图像中是致密的。特别是,这回答了kubika和Leiderman的一个问题。我们也证明了对于紧化空间K $K$,N Y $NY$紧性的性质是由连续空间cp (K) $C_p(K)$的拓扑结构决定的K $K$的实值函数具有点向收敛拓扑。这完善了Zakrzewski最近的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the class of NY compact spaces of finitely supported elements and related classes

On the class of NY compact spaces of finitely supported elements and related classes

On the class of NY compact spaces of finitely supported elements and related classes

On the class of NY compact spaces of finitely supported elements and related classes

We prove that a compact space K $K$ embeds into a σ $\sigma$ -product of compact metrizable spaces ( σ $\sigma$ -product of intervals) if and only if K $K$ is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of K $K$ has a nonempty relative open second countable subset. This provides novel characterizations of ω $\omega$ -Corson and N Y $NY$ compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the σ $\sigma$ -product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space K $K$ , the property of being N Y $NY$ compact is determined by the topological structure of the space C p ( K ) $C_p(K)$ of continuous real-valued functions of K $K$ equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信