关于开普勒问题的佐尔变形

IF 0.9 3区 数学 Q2 MATHEMATICS
Luca Asselle, Stefano Baranzini
{"title":"关于开普勒问题的佐尔变形","authors":"Luca Asselle,&nbsp;Stefano Baranzini","doi":"10.1112/blms.70059","DOIUrl":null,"url":null,"abstract":"<p>A celebrated result of Bertrand states that the only central force potentials on the plane with the property that all bounded orbits are periodic are the Kepler potential and the potential of the harmonic oscillator. In this paper, we complement Bertrand's theorem showing the existence of an infinite-dimensional space of central force potentials on the plane which are <i>Zoll</i> at a given energy level, meaning that all non-collision orbits with given energy are closed and of the same length. We also determine all natural systems on the (not necessarily flat) plane which are invariant under rotations and Zoll at a given energy and prove several existence and rigidity results for systems which are Zoll at multiple energies.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1749-1767"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70059","citationCount":"0","resultStr":"{\"title\":\"On the Zoll deformations of the Kepler problem\",\"authors\":\"Luca Asselle,&nbsp;Stefano Baranzini\",\"doi\":\"10.1112/blms.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A celebrated result of Bertrand states that the only central force potentials on the plane with the property that all bounded orbits are periodic are the Kepler potential and the potential of the harmonic oscillator. In this paper, we complement Bertrand's theorem showing the existence of an infinite-dimensional space of central force potentials on the plane which are <i>Zoll</i> at a given energy level, meaning that all non-collision orbits with given energy are closed and of the same length. We also determine all natural systems on the (not necessarily flat) plane which are invariant under rotations and Zoll at a given energy and prove several existence and rigidity results for systems which are Zoll at multiple energies.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1749-1767\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70059\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

伯特兰的一个著名的结论是平面上唯一具有所有有界轨道都是周期的性质的中心力势是开普勒势和谐振子势。在本文中,我们补充了Bertrand定理,证明了平面上存在一个无限维空间的中心力势,该空间在给定的能量水平上是Zoll的,这意味着所有具有给定能量的非碰撞轨道都是闭合的并且长度相同。我们还确定了(不一定是平坦的)平面上所有在旋转和给定能量下Zoll不变的自然系统,并证明了多个能量下Zoll系统的几个存在性和刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Zoll deformations of the Kepler problem

On the Zoll deformations of the Kepler problem

On the Zoll deformations of the Kepler problem

On the Zoll deformations of the Kepler problem

On the Zoll deformations of the Kepler problem

A celebrated result of Bertrand states that the only central force potentials on the plane with the property that all bounded orbits are periodic are the Kepler potential and the potential of the harmonic oscillator. In this paper, we complement Bertrand's theorem showing the existence of an infinite-dimensional space of central force potentials on the plane which are Zoll at a given energy level, meaning that all non-collision orbits with given energy are closed and of the same length. We also determine all natural systems on the (not necessarily flat) plane which are invariant under rotations and Zoll at a given energy and prove several existence and rigidity results for systems which are Zoll at multiple energies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信