On the double tangent of projective closed curves

IF 0.9 3区 数学 Q2 MATHEMATICS
Thomas Blomme
{"title":"On the double tangent of projective closed curves","authors":"Thomas Blomme","doi":"10.1112/blms.70061","DOIUrl":null,"url":null,"abstract":"<p>We generalize a previous result by Fabricius–Bjerre [Math. Scand. 11 (1962), no. 2, 113–116] from curves in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> to curves in <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^2$</annotation>\n </semantics></math>. Applied to the case of real algebraic curves, this recovers the signed count of bitangents of quartics introduced by Larson–Vogt [Res. Math. Sci. 8 (2021), no. 26] and proves its positivity, conjectured by Larson–Vogt. Our method is not specific to quartics and applies to algebraic curves of any degree.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1791-1800"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize a previous result by Fabricius–Bjerre [Math. Scand. 11 (1962), no. 2, 113–116] from curves in R 2 $\mathbb {R}^2$ to curves in R P 2 $\mathbb {R}P^2$ . Applied to the case of real algebraic curves, this recovers the signed count of bitangents of quartics introduced by Larson–Vogt [Res. Math. Sci. 8 (2021), no. 26] and proves its positivity, conjectured by Larson–Vogt. Our method is not specific to quartics and applies to algebraic curves of any degree.

Abstract Image

Abstract Image

Abstract Image

在投影闭合曲线的重切线上
我们推广了fabicius - bjerre[数学]先前的结果。Scand. 11 (1962), no。[2]从r2 $\mathbb {R}^2$中的曲线到r2 $\mathbb {R}P^2$中的曲线。应用于实代数曲线的情况下,恢复了Larson-Vogt [Res. Math]引入的四分位数的有符号计数。科学通报8 (2021),no。[26]并证明了Larson-Vogt猜想的正性。我们的方法不是特定于四分之一,适用于任何程度的代数曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信