高维蠕虫域

IF 0.9 3区 数学 Q2 MATHEMATICS
Simone Calamai, Gian Maria Dall'Ara
{"title":"高维蠕虫域","authors":"Simone Calamai,&nbsp;Gian Maria Dall'Ara","doi":"10.1112/blms.70057","DOIUrl":null,"url":null,"abstract":"<p>We show how to construct a class of smooth bounded pseudoconvex domains whose boundary contains a given Stein manifold with strongly pseudoconvex boundary, having a prescribed codimension and D'Angelo class (a cohomological invariant measuring the “winding” of the boundary of the domain around the submanifold). Some open questions in the regularity theory of the <span></span><math>\n <semantics>\n <mover>\n <mi>∂</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\partial }$</annotation>\n </semantics></math>-Neumann problem are discussed in the setting of these domains.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1718-1728"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher dimensional worm domains\",\"authors\":\"Simone Calamai,&nbsp;Gian Maria Dall'Ara\",\"doi\":\"10.1112/blms.70057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show how to construct a class of smooth bounded pseudoconvex domains whose boundary contains a given Stein manifold with strongly pseudoconvex boundary, having a prescribed codimension and D'Angelo class (a cohomological invariant measuring the “winding” of the boundary of the domain around the submanifold). Some open questions in the regularity theory of the <span></span><math>\\n <semantics>\\n <mover>\\n <mi>∂</mi>\\n <mo>¯</mo>\\n </mover>\\n <annotation>$\\\\overline{\\\\partial }$</annotation>\\n </semantics></math>-Neumann problem are discussed in the setting of these domains.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1718-1728\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了如何构造一类光滑有界伪凸区域,其边界包含给定的具有强伪凸边界的Stein流形,具有规定的余维数和D'Angelo类(测量区域边界围绕子流形的“绕”度的上同调不变量)。在这些域的设置中讨论了∂¯$\overline{\partial }$ -Neumann问题的正则性理论中的一些开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher dimensional worm domains

Higher dimensional worm domains

Higher dimensional worm domains

Higher dimensional worm domains

We show how to construct a class of smooth bounded pseudoconvex domains whose boundary contains a given Stein manifold with strongly pseudoconvex boundary, having a prescribed codimension and D'Angelo class (a cohomological invariant measuring the “winding” of the boundary of the domain around the submanifold). Some open questions in the regularity theory of the ¯ $\overline{\partial }$ -Neumann problem are discussed in the setting of these domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信