Smooth structures on nonorientable 4-manifolds via twisting operations

IF 0.9 3区 数学 Q2 MATHEMATICS
Valentina Bais, Rafael Torres
{"title":"Smooth structures on nonorientable 4-manifolds via twisting operations","authors":"Valentina Bais,&nbsp;Rafael Torres","doi":"10.1112/blms.70060","DOIUrl":null,"url":null,"abstract":"<p>Five observations compose the main results of this note. The first records the existence of a smoothly embedded 2-sphere <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> inside <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^2\\times S^2$</annotation>\n </semantics></math> such that performing a Gluck twist on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> produces a manifold <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> that is homeomorphic but not diffeomorphic to the total space of the nontrivial 2-sphere bundle over the real projective plane <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mi>γ</mi>\n <mi>⊕</mi>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$S(2\\gamma \\oplus \\mathbb {R})$</annotation>\n </semantics></math>. The second observation is that there is a 5-dimensional cobordism with a single 2-handle between the 4-manifold <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> and a mapping torus that was used by Cappell–Shaneson to construct an exotic <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>4</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^4$</annotation>\n </semantics></math>. This construction of <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> is similar to the one of the Cappell–Shaneson homotopy 4-spheres. The third observation is that twisting an embedded real projective plane inside <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> produces a manifold that is homeomorphic but not diffeomorphic to the circle sum of two copies of <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>4</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^4$</annotation>\n </semantics></math>. The fourth observation records new examples of pairs of homeomorphic but not diffeomorphic closed 4-manifolds with Euler characteristic one. These include the total space of the nontrivial <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^2$</annotation>\n </semantics></math>-bundle over <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^2$</annotation>\n </semantics></math>. Knotting phenomena of 2-spheres in nonorientable 4-manifolds that stands in glaring contrast with known phenomena in the orientable domain is pointed out in the fifth observation.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1768-1790"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70060","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Five observations compose the main results of this note. The first records the existence of a smoothly embedded 2-sphere S $S$ inside R P 2 × S 2 $\mathbb {R}P^2\times S^2$ such that performing a Gluck twist on S $S$ produces a manifold Y $Y$ that is homeomorphic but not diffeomorphic to the total space of the nontrivial 2-sphere bundle over the real projective plane S ( 2 γ R ) $S(2\gamma \oplus \mathbb {R})$ . The second observation is that there is a 5-dimensional cobordism with a single 2-handle between the 4-manifold Y $Y$ and a mapping torus that was used by Cappell–Shaneson to construct an exotic R P 4 $\mathbb {R}P^4$ . This construction of Y $Y$ is similar to the one of the Cappell–Shaneson homotopy 4-spheres. The third observation is that twisting an embedded real projective plane inside Y $Y$ produces a manifold that is homeomorphic but not diffeomorphic to the circle sum of two copies of R P 4 $\mathbb {R}P^4$ . The fourth observation records new examples of pairs of homeomorphic but not diffeomorphic closed 4-manifolds with Euler characteristic one. These include the total space of the nontrivial R P 2 $\mathbb {R}P^2$ -bundle over R P 2 $\mathbb {R}P^2$ . Knotting phenomena of 2-spheres in nonorientable 4-manifolds that stands in glaring contrast with known phenomena in the orientable domain is pointed out in the fifth observation.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

非定向4-流形的扭曲光滑结构
五个观察结果构成本说明的主要结果。第一个记录了在R p2 × s2 $\mathbb {R}P^2\times S^2$内平滑嵌入2球S $S$的存在,使得在S $S$上执行Gluck扭转产生一个流形Y $Y$,它与实投影平面S (2 γ⊕)上的非平凡2球束的总空间是同胚的,但不是微分的R) $S(2\gamma \oplus \mathbb {R})$。第二个观察结果是,在4流形Y $Y$和Cappell-Shaneson用来构造奇异的rp4 $\mathbb {R}P^4$的映射环面之间存在一个具有单个2手柄的5维共轴。Y $Y$的这种构造类似于Cappell-Shaneson同伦4球的构造。第三个观察是,在Y $Y$内扭曲嵌入的实投影平面产生一个流形,它是同胚的,但不与两个拷贝的rp4的圆和微分同态$\mathbb {R}P^4$。第四个观察记录了欧拉特征为1的同胚而非微分同胚闭4流形对的新例子。这些包括非平凡的r2 $\mathbb {R}P^2$ -束在r2 $\mathbb {R}P^2$上的总空间。在第五次观测中,指出了不可定向4流形中2球的打结现象,这与可定向领域中已知的打结现象形成了鲜明的对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信