在省略许多连续的+1$ +1$值的完全乘法±1$ \pm 1$序列上

IF 0.9 3区 数学 Q2 MATHEMATICS
Yichen You
{"title":"在省略许多连续的+1$ +1$值的完全乘法±1$ \\pm 1$序列上","authors":"Yichen You","doi":"10.1112/blms.70056","DOIUrl":null,"url":null,"abstract":"<p>We say that <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\pm 1$</annotation>\n </semantics></math>-valued completely multiplicative functions are <i>length-</i><span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> <i>functions</i> <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> if they take the value <span></span><math>\n <semantics>\n <mrow>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$+1$</annotation>\n </semantics></math> at at most <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> consecutive integers. We introduce a method to extend the length of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length-<span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> functions systematically for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$k\\geqslant 4$</annotation>\n </semantics></math> which generalizes the work of Schur for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k = 2$</annotation>\n </semantics></math> and Hudson for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$k =3$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1708-1717"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70056","citationCount":"0","resultStr":"{\"title\":\"On completely multiplicative \\n \\n \\n ±\\n 1\\n \\n $\\\\pm 1$\\n sequences that omit many consecutive \\n \\n \\n +\\n 1\\n \\n $+1$\\n values\",\"authors\":\"Yichen You\",\"doi\":\"10.1112/blms.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We say that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\pm 1$</annotation>\\n </semantics></math>-valued completely multiplicative functions are <i>length-</i><span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> <i>functions</i> <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> if they take the value <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$+1$</annotation>\\n </semantics></math> at at most <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> consecutive integers. We introduce a method to extend the length of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length-<span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> functions systematically for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$k\\\\geqslant 4$</annotation>\\n </semantics></math> which generalizes the work of Schur for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$k = 2$</annotation>\\n </semantics></math> and Hudson for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$k =3$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1708-1717\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70056\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们说±1 $\pm 1$值的完全乘法函数是长度为- k的$k$函数f $f$如果它们取+ 1的值$+1$最多k个$k$连续整数。我们引入了一种方法,利用[7]中的“旋转技巧”来扩展f $f$的长度。在艾略特猜想的假设下,该方法允许我们系统地为k或4 $k\geqslant 4$构建长度- k $k$函数,它概括了k = 2的Schur的工作$k = 2$和Hudson的k = 3 $k =3$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On completely multiplicative 
         
            
               ±
               1
            
            $\pm 1$
          sequences that omit many consecutive 
         
            
               +
               1
            
            $+1$
          values

On completely multiplicative 
         
            
               ±
               1
            
            $\pm 1$
          sequences that omit many consecutive 
         
            
               +
               1
            
            $+1$
          values

On completely multiplicative 
         
            
               ±
               1
            
            $\pm 1$
          sequences that omit many consecutive 
         
            
               +
               1
            
            $+1$
          values

On completely multiplicative ± 1 $\pm 1$ sequences that omit many consecutive + 1 $+1$ values

We say that ± 1 $\pm 1$ -valued completely multiplicative functions are length- k $k$ functions f $f$ if they take the value + 1 $+1$ at at most k $k$ consecutive integers. We introduce a method to extend the length of f $f$ using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length- k $k$ functions systematically for k 4 $k\geqslant 4$ which generalizes the work of Schur for k = 2 $k = 2$ and Hudson for k = 3 $k =3$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信