{"title":"在省略许多连续的+1$ +1$值的完全乘法±1$ \\pm 1$序列上","authors":"Yichen You","doi":"10.1112/blms.70056","DOIUrl":null,"url":null,"abstract":"<p>We say that <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\pm 1$</annotation>\n </semantics></math>-valued completely multiplicative functions are <i>length-</i><span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> <i>functions</i> <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> if they take the value <span></span><math>\n <semantics>\n <mrow>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$+1$</annotation>\n </semantics></math> at at most <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> consecutive integers. We introduce a method to extend the length of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length-<span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> functions systematically for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$k\\geqslant 4$</annotation>\n </semantics></math> which generalizes the work of Schur for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k = 2$</annotation>\n </semantics></math> and Hudson for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$k =3$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1708-1717"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70056","citationCount":"0","resultStr":"{\"title\":\"On completely multiplicative \\n \\n \\n ±\\n 1\\n \\n $\\\\pm 1$\\n sequences that omit many consecutive \\n \\n \\n +\\n 1\\n \\n $+1$\\n values\",\"authors\":\"Yichen You\",\"doi\":\"10.1112/blms.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We say that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\pm 1$</annotation>\\n </semantics></math>-valued completely multiplicative functions are <i>length-</i><span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> <i>functions</i> <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> if they take the value <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$+1$</annotation>\\n </semantics></math> at at most <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> consecutive integers. We introduce a method to extend the length of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length-<span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> functions systematically for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$k\\\\geqslant 4$</annotation>\\n </semantics></math> which generalizes the work of Schur for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$k = 2$</annotation>\\n </semantics></math> and Hudson for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$k =3$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1708-1717\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70056\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On completely multiplicative
±
1
$\pm 1$
sequences that omit many consecutive
+
1
$+1$
values
We say that -valued completely multiplicative functions are length-functions if they take the value at at most consecutive integers. We introduce a method to extend the length of using the idea of the “rotation trick” in [7]. Under the assumption of Elliott's conjecture, this method allows us to construct length- functions systematically for which generalizes the work of Schur for and Hudson for .