在投影闭合曲线的重切线上

IF 0.9 3区 数学 Q2 MATHEMATICS
Thomas Blomme
{"title":"在投影闭合曲线的重切线上","authors":"Thomas Blomme","doi":"10.1112/blms.70061","DOIUrl":null,"url":null,"abstract":"<p>We generalize a previous result by Fabricius–Bjerre [Math. Scand. 11 (1962), no. 2, 113–116] from curves in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> to curves in <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}P^2$</annotation>\n </semantics></math>. Applied to the case of real algebraic curves, this recovers the signed count of bitangents of quartics introduced by Larson–Vogt [Res. Math. Sci. 8 (2021), no. 26] and proves its positivity, conjectured by Larson–Vogt. Our method is not specific to quartics and applies to algebraic curves of any degree.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1791-1800"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the double tangent of projective closed curves\",\"authors\":\"Thomas Blomme\",\"doi\":\"10.1112/blms.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalize a previous result by Fabricius–Bjerre [Math. Scand. 11 (1962), no. 2, 113–116] from curves in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math> to curves in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {R}P^2$</annotation>\\n </semantics></math>. Applied to the case of real algebraic curves, this recovers the signed count of bitangents of quartics introduced by Larson–Vogt [Res. Math. Sci. 8 (2021), no. 26] and proves its positivity, conjectured by Larson–Vogt. Our method is not specific to quartics and applies to algebraic curves of any degree.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1791-1800\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70061\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们推广了fabicius - bjerre[数学]先前的结果。Scand. 11 (1962), no。[2]从r2 $\mathbb {R}^2$中的曲线到r2 $\mathbb {R}P^2$中的曲线。应用于实代数曲线的情况下,恢复了Larson-Vogt [Res. Math]引入的四分位数的有符号计数。科学通报8 (2021),no。[26]并证明了Larson-Vogt猜想的正性。我们的方法不是特定于四分之一,适用于任何程度的代数曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the double tangent of projective closed curves

On the double tangent of projective closed curves

On the double tangent of projective closed curves

On the double tangent of projective closed curves

We generalize a previous result by Fabricius–Bjerre [Math. Scand. 11 (1962), no. 2, 113–116] from curves in R 2 $\mathbb {R}^2$ to curves in R P 2 $\mathbb {R}P^2$ . Applied to the case of real algebraic curves, this recovers the signed count of bitangents of quartics introduced by Larson–Vogt [Res. Math. Sci. 8 (2021), no. 26] and proves its positivity, conjectured by Larson–Vogt. Our method is not specific to quartics and applies to algebraic curves of any degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信