{"title":"On the class of NY compact spaces of finitely supported elements and related classes","authors":"Antonio Avilés, Mikołaj Krupski","doi":"10.1112/blms.70058","DOIUrl":null,"url":null,"abstract":"<p>We prove that a compact space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> embeds into a <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product of compact metrizable spaces (<span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product of intervals) if and only if <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> has a nonempty relative open second countable subset. This provides novel characterizations of <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math>-Corson and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$NY$</annotation>\n </semantics></math> compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, the property of being <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$NY$</annotation>\n </semantics></math> compact is determined by the topological structure of the space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_p(K)$</annotation>\n </semantics></math> of continuous real-valued functions of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1729-1748"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that a compact space embeds into a -product of compact metrizable spaces (-product of intervals) if and only if is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of has a nonempty relative open second countable subset. This provides novel characterizations of -Corson and compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the -product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space , the property of being compact is determined by the topological structure of the space of continuous real-valued functions of equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.