On the class of NY compact spaces of finitely supported elements and related classes

IF 0.9 3区 数学 Q2 MATHEMATICS
Antonio Avilés, Mikołaj Krupski
{"title":"On the class of NY compact spaces of finitely supported elements and related classes","authors":"Antonio Avilés,&nbsp;Mikołaj Krupski","doi":"10.1112/blms.70058","DOIUrl":null,"url":null,"abstract":"<p>We prove that a compact space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> embeds into a <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product of compact metrizable spaces (<span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product of intervals) if and only if <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> has a nonempty relative open second countable subset. This provides novel characterizations of <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math>-Corson and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$NY$</annotation>\n </semantics></math> compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>-product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, the property of being <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$NY$</annotation>\n </semantics></math> compact is determined by the topological structure of the space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_p(K)$</annotation>\n </semantics></math> of continuous real-valued functions of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1729-1748"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that a compact space K $K$ embeds into a σ $\sigma$ -product of compact metrizable spaces ( σ $\sigma$ -product of intervals) if and only if K $K$ is (strongly countable-dimensional) hereditarily metalindelöf and every subspace of K $K$ has a nonempty relative open second countable subset. This provides novel characterizations of ω $\omega$ -Corson and N Y $NY$ compact spaces. We give an example of a uniform Eberlein compact space that does not embed into a product of compact metric spaces in such a way that the σ $\sigma$ -product is dense in the image. In particular, this answers a question of Kubiś and Leiderman. We also show that for a compact space K $K$ , the property of being N Y $NY$ compact is determined by the topological structure of the space C p ( K ) $C_p(K)$ of continuous real-valued functions of K $K$ equipped with the pointwise convergence topology. This refines a recent result of Zakrzewski.

Abstract Image

Abstract Image

Abstract Image

有限支撑元的NY紧空间的类及相关类
证明紧化空间K $K$嵌入紧化可度量空间的σ $\sigma$ -积(σ $\sigma$ -间隔积)当且仅当K $K$是(强可数维数)遗传的metalindelöf,并且是的每一个子空间K $K$有一个非空的相对开放第二可数子集。这提供了ω $\omega$ -Corson和ny $NY$紧空间的新表征。我们给出了一个均匀的Eberlein紧化空间的例子,它没有嵌入紧化度量空间的积中,以至于σ $\sigma$ -积在图像中是致密的。特别是,这回答了kubika和Leiderman的一个问题。我们也证明了对于紧化空间K $K$,N Y $NY$紧性的性质是由连续空间cp (K) $C_p(K)$的拓扑结构决定的K $K$的实值函数具有点向收敛拓扑。这完善了Zakrzewski最近的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信