{"title":"关于列夫的周期性猜想","authors":"Christian Reiher","doi":"10.1112/blms.70043","DOIUrl":null,"url":null,"abstract":"<p>We classify the sum-free subsets of <span></span><math>\n <semantics>\n <msubsup>\n <mi>F</mi>\n <mn>3</mn>\n <mi>n</mi>\n </msubsup>\n <annotation>${\\mathbb {F}}_3^n$</annotation>\n </semantics></math> whose density exceeds <span></span><math>\n <semantics>\n <mfrac>\n <mn>1</mn>\n <mn>6</mn>\n </mfrac>\n <annotation>$\\frac{1}{6}$</annotation>\n </semantics></math>. This yields a resolution of Vsevolod Lev's periodicity conjecture, which asserts that if a sum-free subset <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msubsup>\n <mi>F</mi>\n <mn>3</mn>\n <mi>n</mi>\n </msubsup>\n </mrow>\n <annotation>${A\\subseteq {\\mathbb {F}}_3^n}$</annotation>\n </semantics></math> is maximal with respect to inclusion and aperiodic (in the sense that there is no non-zero vector <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>+</mo>\n <mi>v</mi>\n <mo>=</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$A+v=A$</annotation>\n </semantics></math>), then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n <mo>⩽</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>3</mn>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$|A|\\leqslant \\frac{1}{2}(3^{n-1}+1)$</annotation>\n </semantics></math>—a bound known to be optimal if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≠</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ne 2$</annotation>\n </semantics></math>, while for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math> there are no such sets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1496-1511"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70043","citationCount":"0","resultStr":"{\"title\":\"On Lev's periodicity conjecture\",\"authors\":\"Christian Reiher\",\"doi\":\"10.1112/blms.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We classify the sum-free subsets of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>F</mi>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msubsup>\\n <annotation>${\\\\mathbb {F}}_3^n$</annotation>\\n </semantics></math> whose density exceeds <span></span><math>\\n <semantics>\\n <mfrac>\\n <mn>1</mn>\\n <mn>6</mn>\\n </mfrac>\\n <annotation>$\\\\frac{1}{6}$</annotation>\\n </semantics></math>. This yields a resolution of Vsevolod Lev's periodicity conjecture, which asserts that if a sum-free subset <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊆</mo>\\n <msubsup>\\n <mi>F</mi>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msubsup>\\n </mrow>\\n <annotation>${A\\\\subseteq {\\\\mathbb {F}}_3^n}$</annotation>\\n </semantics></math> is maximal with respect to inclusion and aperiodic (in the sense that there is no non-zero vector <span></span><math>\\n <semantics>\\n <mi>v</mi>\\n <annotation>$v$</annotation>\\n </semantics></math> satisfying <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>+</mo>\\n <mi>v</mi>\\n <mo>=</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$A+v=A$</annotation>\\n </semantics></math>), then <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n </mrow>\\n <mo>⩽</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$|A|\\\\leqslant \\\\frac{1}{2}(3^{n-1}+1)$</annotation>\\n </semantics></math>—a bound known to be optimal if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≠</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n\\\\ne 2$</annotation>\\n </semantics></math>, while for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n=2$</annotation>\\n </semantics></math> there are no such sets.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1496-1511\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70043\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们对密度超过16 $\frac{1}{6}$的f3n ${\mathbb {F}}_3^n$的无和子集进行了分类。这就解决了列夫的周期性猜想,它断言,如果一个无和的子集a≠F 3n ${A\subseteq {\mathbb {F}}_3^n}$在包含和非周期(即不存在非零向量v $v$满足?A + v = A $A+v=A$),然后| A |≥1 2 (3 n−1)+ 1) $|A|\leqslant \frac{1}{2}(3^{n-1}+1)$ -当n≠2时已知的最优界$n\ne 2$,而对于n = 2 $n=2$,不存在这样的集合。
We classify the sum-free subsets of whose density exceeds . This yields a resolution of Vsevolod Lev's periodicity conjecture, which asserts that if a sum-free subset is maximal with respect to inclusion and aperiodic (in the sense that there is no non-zero vector satisfying ), then —a bound known to be optimal if , while for there are no such sets.