Optimal power-weighted Birman–Hardy–Rellich-type inequalities on finite intervals and annuli

IF 0.8 3区 数学 Q2 MATHEMATICS
Fritz Gesztesy, Michael M. H. Pang
{"title":"Optimal power-weighted Birman–Hardy–Rellich-type inequalities on finite intervals and annuli","authors":"Fritz Gesztesy,&nbsp;Michael M. H. Pang","doi":"10.1112/blms.70063","DOIUrl":null,"url":null,"abstract":"<p>We derive an optimal power-weighted Hardy-type inequality in integral form on finite intervals and subsequently prove the analogous inequality in differential form. We note that the optimal constant of the latter inequality differs from the former. Moreover, by iterating these inequalities we derive the sequence of power-weighted Birman–Hardy–Rellich-type inequalities in integral form on finite intervals and then also prove the analogous sequence of inequalities in differential form. We use the one-dimensional Hardy-type result in differential form to derive an optimal multi-dimensional version of the power-weighted Hardy inequality in differential form on annuli (i.e., spherical shell domains), and once more employ an iteration procedure to derive the Birman–Hardy–Rellich-type sequence of power-weighted higher order Hardy-type inequalities for annuli. In the limit as the annulus approaches <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>${\\mathbb {R}}^n$</annotation>\n </semantics></math>\\{0}, we recover well-known prior results on Rellich-type inequalities on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>${\\mathbb {R}}^n$</annotation>\n </semantics></math>\\{0}.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1819-1840"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive an optimal power-weighted Hardy-type inequality in integral form on finite intervals and subsequently prove the analogous inequality in differential form. We note that the optimal constant of the latter inequality differs from the former. Moreover, by iterating these inequalities we derive the sequence of power-weighted Birman–Hardy–Rellich-type inequalities in integral form on finite intervals and then also prove the analogous sequence of inequalities in differential form. We use the one-dimensional Hardy-type result in differential form to derive an optimal multi-dimensional version of the power-weighted Hardy inequality in differential form on annuli (i.e., spherical shell domains), and once more employ an iteration procedure to derive the Birman–Hardy–Rellich-type sequence of power-weighted higher order Hardy-type inequalities for annuli. In the limit as the annulus approaches R n ${\mathbb {R}}^n$ \{0}, we recover well-known prior results on Rellich-type inequalities on R n ${\mathbb {R}}^n$ \{0}.

有限区间和环空上最优幂加权birman - hardy - rellich型不等式
我们在有限区间上导出了一个积分形式的最优幂加权hardy型不等式,并证明了其微分形式的类似不等式。我们注意到后一个不等式的最优常数不同于前一个不等式。此外,通过对这些不等式的迭代,我们得到了有限区间上幂加权birman - hardy - rellich型积分形式的不等式序列,并证明了微分形式的类似不等式序列。利用一维Hardy型微分结果,在环空(即球壳域)上推导了幂加权Hardy型微分不等式的最优多维形式,并再次采用迭代方法推导了环空的幂加权高阶Hardy型不等式birman - Hardy- rellich型序列。在环环接近R n$ {\mathbb {R}}^n$ \{0}的极限下,我们恢复了已知的关于R n$ {\mathbb {R}}^n$ \{0}上的rellich型不等式的先验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信