下载PDF
{"title":"剩余类中的最小对象","authors":"Abhishek Jha","doi":"10.1112/blms.70069","DOIUrl":null,"url":null,"abstract":"<p>We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(m,a)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is odd, there exists <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$n\\leqslant m^{2+o(1)}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n <mo>≡</mo>\n <mi>a</mi>\n <mspace></mspace>\n <mo>(</mo>\n <mi>mod</mi>\n <mspace></mspace>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi (n)\\equiv a\\ (\\mathrm{mod}\\ m)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1908-1917"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70069","citationCount":"0","resultStr":"{\"title\":\"Smallest totient in a residue class\",\"authors\":\"Abhishek Jha\",\"doi\":\"10.1112/blms.70069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(m,a)$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> is odd, there exists <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩽</mo>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$n\\\\leqslant m^{2+o(1)}$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n <mo>≡</mo>\\n <mi>a</mi>\\n <mspace></mspace>\\n <mo>(</mo>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\varphi (n)\\\\equiv a\\\\ (\\\\mathrm{mod}\\\\ m)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1908-1917\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70069\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用