去除Ricci流平滑的标量曲率假设

IF 0.9 3区 数学 Q2 MATHEMATICS
Adam Martens
{"title":"去除Ricci流平滑的标量曲率假设","authors":"Adam Martens","doi":"10.1112/blms.70073","DOIUrl":null,"url":null,"abstract":"<p>In recent work of Chan–Huang–Lee, it is shown that if a manifold enjoys uniform bounds on (a) the negative part of the scalar curvature, (b) the local entropy, and (c) volume ratios up to a fixed scale, then there exists a Ricci flow for some definite time with estimates on the solution assuming that the local curvature concentration is small enough initially (depending only on these a priori bounds). In this work, we show that the bound on scalar curvature assumption (a) is redundant. We also give some applications of this quantitative short-time existence, including a Ricci flow smoothing result for measure space limits, a Gromov–Hausdorff compactness result, and a topological and geometric rigidity result in the case that the a priori local bounds are strengthened to be global.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1968-1989"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70073","citationCount":"0","resultStr":"{\"title\":\"Removing scalar curvature assumption for Ricci flow smoothing\",\"authors\":\"Adam Martens\",\"doi\":\"10.1112/blms.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent work of Chan–Huang–Lee, it is shown that if a manifold enjoys uniform bounds on (a) the negative part of the scalar curvature, (b) the local entropy, and (c) volume ratios up to a fixed scale, then there exists a Ricci flow for some definite time with estimates on the solution assuming that the local curvature concentration is small enough initially (depending only on these a priori bounds). In this work, we show that the bound on scalar curvature assumption (a) is redundant. We also give some applications of this quantitative short-time existence, including a Ricci flow smoothing result for measure space limits, a Gromov–Hausdorff compactness result, and a topological and geometric rigidity result in the case that the a priori local bounds are strengthened to be global.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"1968-1989\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70073\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70073\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70073","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Chan-Huang-Lee最近的工作中,证明了如果流形在(a)标量曲率的负部分,(b)局部熵和(c)体积比达到固定尺度上具有一致的界,那么存在一个确定时间的Ricci流,并且假设局部曲率浓度最初足够小(仅依赖于这些先验界),对解有估计。在这项工作中,我们证明了标量曲率假设(a)的界是冗余的。我们也给这个定量短期存在的一些应用程序,包括瑞奇流平滑结果测度空间限制,一个Gromov-Hausdorff密实度的结果,和拓扑和几何刚度导致的先天的地方范围加强全球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Removing scalar curvature assumption for Ricci flow smoothing

Removing scalar curvature assumption for Ricci flow smoothing

Removing scalar curvature assumption for Ricci flow smoothing

Removing scalar curvature assumption for Ricci flow smoothing

Removing scalar curvature assumption for Ricci flow smoothing

In recent work of Chan–Huang–Lee, it is shown that if a manifold enjoys uniform bounds on (a) the negative part of the scalar curvature, (b) the local entropy, and (c) volume ratios up to a fixed scale, then there exists a Ricci flow for some definite time with estimates on the solution assuming that the local curvature concentration is small enough initially (depending only on these a priori bounds). In this work, we show that the bound on scalar curvature assumption (a) is redundant. We also give some applications of this quantitative short-time existence, including a Ricci flow smoothing result for measure space limits, a Gromov–Hausdorff compactness result, and a topological and geometric rigidity result in the case that the a priori local bounds are strengthened to be global.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信