与离散子群相关的相干系统的线性独立性

IF 0.8 3区 数学 Q2 MATHEMATICS
Ulrik Enstad, Jordy Timo van Velthoven
{"title":"与离散子群相关的相干系统的线性独立性","authors":"Ulrik Enstad,&nbsp;Jordy Timo van Velthoven","doi":"10.1112/blms.13226","DOIUrl":null,"url":null,"abstract":"<p>This note considers the finite linear independence of coherent systems associated to discrete subgroups. We show by simple arguments that such coherent systems of amenable groups are linearly independent whenever the associated twisted group ring does not contain any nontrivial zero divisors. We verify the latter for discrete subgroups in nilpotent Lie groups. For the particular case of time-frequency translates of Euclidean space, our approach provides a simple and self-contained proof of the Heil–Ramanathan–Topiwala conjecture for subsets of arbitrary discrete subgroups.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"315-329"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13226","citationCount":"0","resultStr":"{\"title\":\"Linear independence of coherent systems associated to discrete subgroups\",\"authors\":\"Ulrik Enstad,&nbsp;Jordy Timo van Velthoven\",\"doi\":\"10.1112/blms.13226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This note considers the finite linear independence of coherent systems associated to discrete subgroups. We show by simple arguments that such coherent systems of amenable groups are linearly independent whenever the associated twisted group ring does not contain any nontrivial zero divisors. We verify the latter for discrete subgroups in nilpotent Lie groups. For the particular case of time-frequency translates of Euclidean space, our approach provides a simple and self-contained proof of the Heil–Ramanathan–Topiwala conjecture for subsets of arbitrary discrete subgroups.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 2\",\"pages\":\"315-329\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13226\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13226\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13226","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究与离散子群相关的相干系统的有限线性无关性。我们用简单的论证证明了当相关联的扭群环不包含任何非平凡零因子时,这种可调群的相干系统是线性无关的。对于幂零李群中的离散子群,我们验证了后者。对于欧几里得空间的时频转换的特殊情况,我们的方法提供了对任意离散子群子集的heil - ramanahan - topiwala猜想的一个简单且自包含的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear independence of coherent systems associated to discrete subgroups

This note considers the finite linear independence of coherent systems associated to discrete subgroups. We show by simple arguments that such coherent systems of amenable groups are linearly independent whenever the associated twisted group ring does not contain any nontrivial zero divisors. We verify the latter for discrete subgroups in nilpotent Lie groups. For the particular case of time-frequency translates of Euclidean space, our approach provides a simple and self-contained proof of the Heil–Ramanathan–Topiwala conjecture for subsets of arbitrary discrete subgroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信