Universality for transversal Hamilton cycles

IF 0.8 3区 数学 Q2 MATHEMATICS
Candida Bowtell, Patrick Morris, Yanitsa Pehova, Katherine Staden
{"title":"Universality for transversal Hamilton cycles","authors":"Candida Bowtell,&nbsp;Patrick Morris,&nbsp;Yanitsa Pehova,&nbsp;Katherine Staden","doi":"10.1112/blms.13223","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <mo>{</mo>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>G</mi>\n <mi>m</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathbf {G}=\\lbrace G_1, \\ldots, G_m\\rbrace$</annotation>\n </semantics></math> be a graph collection on a common vertex set <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>G</mi>\n <mi>i</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⩾</mo>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\delta (G_i) \\geqslant (1+o(1))n/2$</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mi>m</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$i \\in [m]$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathbf {G}$</annotation>\n </semantics></math> contains every Hamilton cycle pattern. That is, for every map <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>:</mo>\n <mo>[</mo>\n <mi>n</mi>\n <mo>]</mo>\n <mo>→</mo>\n <mo>[</mo>\n <mi>m</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$\\chi: [n] \\rightarrow [m]$</annotation>\n </semantics></math> there is a Hamilton cycle whose <span></span><math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math>th edge lies in <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mrow>\n <mi>χ</mi>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$G_{\\chi (i)}$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"711-729"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = { G 1 , , G m } $\mathbf {G}=\lbrace G_1, \ldots, G_m\rbrace$ be a graph collection on a common vertex set V $V$ of size n $n$ such that δ ( G i ) ( 1 + o ( 1 ) ) n / 2 $\delta (G_i) \geqslant (1+o(1))n/2$ for every i [ m ] $i \in [m]$ . We show that G $\mathbf {G}$ contains every Hamilton cycle pattern. That is, for every map χ : [ n ] [ m ] $\chi: [n] \rightarrow [m]$ there is a Hamilton cycle whose i $i$ th edge lies in G χ ( i ) $G_{\chi (i)}$ .

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信