{"title":"Leavitt路径代数的代数Kirchberg-Phillips问题","authors":"Efren Ruiz","doi":"10.1112/blms.70027","DOIUrl":null,"url":null,"abstract":"<p>The Algebraic Kirchberg–Phillips Question for Leavitt path algebras asks whether pointed <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory is a complete isomorphism invariant for unital, simple, purely infinite Leavitt path algebras over finite graphs. Most work on this problem has focused on determining whether (up to isomorphism) there is a unique unital, simple, Leavitt path algebra with trivial <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory (often reformulated as the question of whether the Leavitt path algebras <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mn>2</mn>\n </msub>\n <annotation>$L_2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <msub>\n <mn>2</mn>\n <mo>−</mo>\n </msub>\n </msub>\n <annotation>$L_{2_-}$</annotation>\n </semantics></math> are isomorphic). However, it is unknown whether a positive answer to this special case implies a positive answer to the Algebraic Kirchberg–Phillips Question. In this note, we pose a different question that asks whether two particular non-simple Leavitt path algebras <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mo>∗</mo>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L_k(\\mathbf {F}_*)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mrow>\n <mo>∗</mo>\n <mo>∗</mo>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L_k(\\mathbf {F}_{**})$</annotation>\n </semantics></math> are isomorphic, and we prove that a positive answer to this question implies a positive answer to the Algebraic Kirchberg–Phillips Question.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1229-1248"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Algebraic Kirchberg–Phillips Question for Leavitt path algebras\",\"authors\":\"Efren Ruiz\",\"doi\":\"10.1112/blms.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Algebraic Kirchberg–Phillips Question for Leavitt path algebras asks whether pointed <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theory is a complete isomorphism invariant for unital, simple, purely infinite Leavitt path algebras over finite graphs. Most work on this problem has focused on determining whether (up to isomorphism) there is a unique unital, simple, Leavitt path algebra with trivial <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theory (often reformulated as the question of whether the Leavitt path algebras <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$L_2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <msub>\\n <mn>2</mn>\\n <mo>−</mo>\\n </msub>\\n </msub>\\n <annotation>$L_{2_-}$</annotation>\\n </semantics></math> are isomorphic). However, it is unknown whether a positive answer to this special case implies a positive answer to the Algebraic Kirchberg–Phillips Question. In this note, we pose a different question that asks whether two particular non-simple Leavitt path algebras <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mo>∗</mo>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L_k(\\\\mathbf {F}_*)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <mo>∗</mo>\\n <mo>∗</mo>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L_k(\\\\mathbf {F}_{**})$</annotation>\\n </semantics></math> are isomorphic, and we prove that a positive answer to this question implies a positive answer to the Algebraic Kirchberg–Phillips Question.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1229-1248\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Algebraic Kirchberg–Phillips Question for Leavitt path algebras
The Algebraic Kirchberg–Phillips Question for Leavitt path algebras asks whether pointed -theory is a complete isomorphism invariant for unital, simple, purely infinite Leavitt path algebras over finite graphs. Most work on this problem has focused on determining whether (up to isomorphism) there is a unique unital, simple, Leavitt path algebra with trivial -theory (often reformulated as the question of whether the Leavitt path algebras and are isomorphic). However, it is unknown whether a positive answer to this special case implies a positive answer to the Algebraic Kirchberg–Phillips Question. In this note, we pose a different question that asks whether two particular non-simple Leavitt path algebras and are isomorphic, and we prove that a positive answer to this question implies a positive answer to the Algebraic Kirchberg–Phillips Question.