{"title":"代数与光滑条件下Hochschild同调的比较","authors":"David Kazhdan, Maarten Solleveld","doi":"10.1112/blms.70028","DOIUrl":null,"url":null,"abstract":"<p>Consider a complex affine variety <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math> and a real analytic Zariski-dense submanifold <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math>. We compare modules over the ring <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O} (\\tilde{V})$</annotation>\n </semantics></math> of regular functions on <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math> with modules over the ring <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math> of smooth complex valued functions on <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>. Under a mild condition on the tangent spaces, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math> is flat as a module over <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O} (\\tilde{V})$</annotation>\n </semantics></math>. From this, we deduce a comparison theorem for the Hochschild homology of finite-type algebras over <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {O} (\\tilde{V})$</annotation>\n </semantics></math> and the Hochschild homology of similar algebras over <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math>. We also establish versions of these results for functions on <span></span><math>\n <semantics>\n <mover>\n <mi>V</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{V}$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>) that are invariant under the action of a finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. As an auxiliary result, we show that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C^\\infty (V)$</annotation>\n </semantics></math> has finite rank as module over <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mi>G</mi>\n </msup>\n </mrow>\n <annotation>$C^\\infty (V)^G$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1249-1269"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70028","citationCount":"0","resultStr":"{\"title\":\"A comparison of Hochschild homology in algebraic and smooth settings\",\"authors\":\"David Kazhdan, Maarten Solleveld\",\"doi\":\"10.1112/blms.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a complex affine variety <span></span><math>\\n <semantics>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{V}$</annotation>\\n </semantics></math> and a real analytic Zariski-dense submanifold <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{V}$</annotation>\\n </semantics></math>. We compare modules over the ring <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {O} (\\\\tilde{V})$</annotation>\\n </semantics></math> of regular functions on <span></span><math>\\n <semantics>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{V}$</annotation>\\n </semantics></math> with modules over the ring <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C^\\\\infty (V)$</annotation>\\n </semantics></math> of smooth complex valued functions on <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math>. Under a mild condition on the tangent spaces, we prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C^\\\\infty (V)$</annotation>\\n </semantics></math> is flat as a module over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {O} (\\\\tilde{V})$</annotation>\\n </semantics></math>. From this, we deduce a comparison theorem for the Hochschild homology of finite-type algebras over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {O} (\\\\tilde{V})$</annotation>\\n </semantics></math> and the Hochschild homology of similar algebras over <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C^\\\\infty (V)$</annotation>\\n </semantics></math>. We also establish versions of these results for functions on <span></span><math>\\n <semantics>\\n <mover>\\n <mi>V</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{V}$</annotation>\\n </semantics></math> (resp. <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math>) that are invariant under the action of a finite group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. As an auxiliary result, we show that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C^\\\\infty (V)$</annotation>\\n </semantics></math> has finite rank as module over <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>G</mi>\\n </msup>\\n </mrow>\\n <annotation>$C^\\\\infty (V)^G$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1249-1269\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70028\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A comparison of Hochschild homology in algebraic and smooth settings
Consider a complex affine variety and a real analytic Zariski-dense submanifold of . We compare modules over the ring of regular functions on with modules over the ring of smooth complex valued functions on . Under a mild condition on the tangent spaces, we prove that is flat as a module over . From this, we deduce a comparison theorem for the Hochschild homology of finite-type algebras over and the Hochschild homology of similar algebras over . We also establish versions of these results for functions on (resp. ) that are invariant under the action of a finite group . As an auxiliary result, we show that has finite rank as module over .