Mehdi Belraouti, Abderrahim Mesbah, Lamine Messaci
{"title":"常曲率时空中Moncrief线的渐近性质","authors":"Mehdi Belraouti, Abderrahim Mesbah, Lamine Messaci","doi":"10.1112/blms.70032","DOIUrl":null,"url":null,"abstract":"<p>We study the asymptotic behavior of Moncrief lines on <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2+1$</annotation>\n </semantics></math> maximal globally hyperbolic spatially compact space-time <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> of nonnegative constant curvature. We show that when the unique geodesic lamination associated with <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is either maximal uniquely ergodic or simplicial, the Moncrief line converges, as time goes to zero, to a unique point in the Thurston boundary of the Teichmüller space.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1347-1359"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70032","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of Moncrief Lines in constant curvature space-times\",\"authors\":\"Mehdi Belraouti, Abderrahim Mesbah, Lamine Messaci\",\"doi\":\"10.1112/blms.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the asymptotic behavior of Moncrief lines on <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$2+1$</annotation>\\n </semantics></math> maximal globally hyperbolic spatially compact space-time <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> of nonnegative constant curvature. We show that when the unique geodesic lamination associated with <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> is either maximal uniquely ergodic or simplicial, the Moncrief line converges, as time goes to zero, to a unique point in the Thurston boundary of the Teichmüller space.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1347-1359\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70032\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70032\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic behavior of Moncrief Lines in constant curvature space-times
We study the asymptotic behavior of Moncrief lines on maximal globally hyperbolic spatially compact space-time of nonnegative constant curvature. We show that when the unique geodesic lamination associated with is either maximal uniquely ergodic or simplicial, the Moncrief line converges, as time goes to zero, to a unique point in the Thurston boundary of the Teichmüller space.