Transcendence of Hecke–Mahler series

IF 0.8 3区 数学 Q2 MATHEMATICS
Florian Luca, Joël Ouaknine, James Worrell
{"title":"Transcendence of Hecke–Mahler series","authors":"Florian Luca,&nbsp;Joël Ouaknine,&nbsp;James Worrell","doi":"10.1112/blms.70033","DOIUrl":null,"url":null,"abstract":"<p>We prove transcendence of the Hecke–Mahler series <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <mi>∞</mi>\n </msubsup>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>⌊</mo>\n <mi>n</mi>\n <mi>θ</mi>\n <mo>+</mo>\n <mi>α</mi>\n <mo>⌋</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>β</mi>\n <mrow>\n <mo>−</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\sum _{n=0}^\\infty f(\\lfloor n\\theta +\\alpha \\rfloor) \\beta ^{-n}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>Z</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$f(x) \\in \\mathbb {Z}[x]$</annotation>\n </semantics></math> is a non-constant polynomial, <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> is a real number, <span></span><math>\n <semantics>\n <mi>θ</mi>\n <annotation>$\\theta$</annotation>\n </semantics></math> is an irrational real number and <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math> is an algebraic number such that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>β</mi>\n <mo>|</mo>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|\\beta |&gt;1$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1360-1368"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove transcendence of the Hecke–Mahler series n = 0 f ( n θ + α ) β n $\sum _{n=0}^\infty f(\lfloor n\theta +\alpha \rfloor) \beta ^{-n}$ , where f ( x ) Z [ x ] $f(x) \in \mathbb {Z}[x]$ is a non-constant polynomial, α $\alpha$ is a real number, θ $\theta$ is an irrational real number and β $\beta$ is an algebraic number such that | β | > 1 $|\beta |>1$ .

Hecke-Mahler系列的超越
证明了Hecke-Mahler级数∑n = 0∞f(⌊n θ)的超越性+ α⌋)β−n $\sum _{n=0}^\infty f(\lfloor n\theta +\alpha \rfloor) \beta ^{-n}$,式中f (x)∈Z [x] $f(x) \in \mathbb {Z}[x]$为非常多项式,α $\alpha$为实数,θ $\theta$是无理数,β $\beta$是代数数,使得| β | &gt;1 $|\beta |>1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信