{"title":"指数价差与正式价差","authors":"Shubhodip Mondal, Alapan Mukhopadhyay","doi":"10.1112/blms.70025","DOIUrl":null,"url":null,"abstract":"<p>We show that when <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a reduced algebra over a characteristic zero field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> and the module of Kähler differentials <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>A</mi>\n <mo>/</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\Omega _{A/k}=0$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is ind-étale, partially answering a question of Bhatt. As further applications of this result, we deduce a rigidity property of Hochschild homology and special instances of Weibel's conjecture and Vorst's conjecture without any noetherian assumptions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1195-1207"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ind-étale versus formally étale\",\"authors\":\"Shubhodip Mondal, Alapan Mukhopadhyay\",\"doi\":\"10.1112/blms.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that when <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a reduced algebra over a characteristic zero field <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> and the module of Kähler differentials <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>A</mi>\\n <mo>/</mo>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\Omega _{A/k}=0$</annotation>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is ind-étale, partially answering a question of Bhatt. As further applications of this result, we deduce a rigidity property of Hochschild homology and special instances of Weibel's conjecture and Vorst's conjecture without any noetherian assumptions.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1195-1207\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70025\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明当A$ A$是特征零域k$ k$上的约简代数,且Kähler微分的模Ω A / k = 0$\Omega _{A/k}=0$,则A$ A$是ind- sameta,部分回答了Bhatt的问题。作为这一结果的进一步应用,我们推导出了Hochschild同调的刚性性质以及Weibel猜想和Vorst猜想的特殊实例,而不需要任何诺瑟尔假设。
We show that when is a reduced algebra over a characteristic zero field and the module of Kähler differentials , then is ind-étale, partially answering a question of Bhatt. As further applications of this result, we deduce a rigidity property of Hochschild homology and special instances of Weibel's conjecture and Vorst's conjecture without any noetherian assumptions.