{"title":"双曲曲面的代数交强度","authors":"Manman Jiang, Huiping Pan","doi":"10.1112/blms.70030","DOIUrl":null,"url":null,"abstract":"<p>We show that the algebraic intersection strength of hyperbolic surfaces of genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> has a minimum in the moduli space. We also describe the asymptotic behavior of the algebraic intersection strength in the moduli space.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1285-1304"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic intersection strength for hyperbolic surfaces\",\"authors\":\"Manman Jiang, Huiping Pan\",\"doi\":\"10.1112/blms.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the algebraic intersection strength of hyperbolic surfaces of genus <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> has a minimum in the moduli space. We also describe the asymptotic behavior of the algebraic intersection strength in the moduli space.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 4\",\"pages\":\"1285-1304\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Algebraic intersection strength for hyperbolic surfaces
We show that the algebraic intersection strength of hyperbolic surfaces of genus has a minimum in the moduli space. We also describe the asymptotic behavior of the algebraic intersection strength in the moduli space.