Ind-étale versus formally étale

IF 0.8 3区 数学 Q2 MATHEMATICS
Shubhodip Mondal, Alapan Mukhopadhyay
{"title":"Ind-étale versus formally étale","authors":"Shubhodip Mondal,&nbsp;Alapan Mukhopadhyay","doi":"10.1112/blms.70025","DOIUrl":null,"url":null,"abstract":"<p>We show that when <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a reduced algebra over a characteristic zero field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> and the module of Kähler differentials <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>A</mi>\n <mo>/</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\Omega _{A/k}=0$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is ind-étale, partially answering a question of Bhatt. As further applications of this result, we deduce a rigidity property of Hochschild homology and special instances of Weibel's conjecture and Vorst's conjecture without any noetherian assumptions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1195-1207"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that when A $A$ is a reduced algebra over a characteristic zero field k $k$ and the module of Kähler differentials Ω A / k = 0 $\Omega _{A/k}=0$ , then A $A$ is ind-étale, partially answering a question of Bhatt. As further applications of this result, we deduce a rigidity property of Hochschild homology and special instances of Weibel's conjecture and Vorst's conjecture without any noetherian assumptions.

指数价差与正式价差
我们证明当A$ A$是特征零域k$ k$上的约简代数,且Kähler微分的模Ω A / k = 0$\Omega _{A/k}=0$,则A$ A$是ind- sameta,部分回答了Bhatt的问题。作为这一结果的进一步应用,我们推导出了Hochschild同调的刚性性质以及Weibel猜想和Vorst猜想的特殊实例,而不需要任何诺瑟尔假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信