无量纲傅里叶限制不等式

IF 0.9 3区 数学 Q2 MATHEMATICS
Diogo Oliveira e Silva, Błażej Wróbel
{"title":"无量纲傅里叶限制不等式","authors":"Diogo Oliveira e Silva,&nbsp;Błażej Wróbel","doi":"10.1112/blms.70098","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{\\bf R}_{\\mathbb {S}^{d-1}}}(p\\rightarrow q)$</annotation>\n </semantics></math> denote the best constant for the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(\\mathbb {R}^d)\\rightarrow L^q(\\mathbb {S}^{d-1})$</annotation>\n </semantics></math> Fourier restriction inequality to the unit sphere <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$\\mathbb {S}^{d-1}$</annotation>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>;</mo>\n <mi>r</mi>\n <mi>a</mi>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf R}_{\\mathbb {S}^{d-1}} (p\\rightarrow q;\\textup {rad})$</annotation>\n </semantics></math> denote the corresponding constant for radial functions. We investigate the asymptotic behavior of the operator norms <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{\\bf R}_{\\mathbb {S}^{d-1}}}(p\\rightarrow q)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>;</mo>\n <mi>r</mi>\n <mi>a</mi>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf R}_{\\mathbb {S}^{d-1}} (p\\rightarrow q;\\textup {rad})$</annotation>\n </semantics></math> as the dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> tends to infinity. We further establish a dimension-free endpoint Stein–Tomas inequality for radial functions, together with the corresponding estimate for general functions which we prove with an <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>d</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(d^{1/2})$</annotation>\n </semantics></math> dependence. Our methods rely on a uniform two-sided refinement of Stempak's asymptotic <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> estimate of Bessel functions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2336-2353"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension-free Fourier restriction inequalities\",\"authors\":\"Diogo Oliveira e Silva,&nbsp;Błażej Wróbel\",\"doi\":\"10.1112/blms.70098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>→</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${{\\\\bf R}_{\\\\mathbb {S}^{d-1}}}(p\\\\rightarrow q)$</annotation>\\n </semantics></math> denote the best constant for the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <msup>\\n <mi>L</mi>\\n <mi>q</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(\\\\mathbb {R}^d)\\\\rightarrow L^q(\\\\mathbb {S}^{d-1})$</annotation>\\n </semantics></math> Fourier restriction inequality to the unit sphere <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {S}^{d-1}$</annotation>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>→</mo>\\n <mi>q</mi>\\n <mo>;</mo>\\n <mi>r</mi>\\n <mi>a</mi>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\bf R}_{\\\\mathbb {S}^{d-1}} (p\\\\rightarrow q;\\\\textup {rad})$</annotation>\\n </semantics></math> denote the corresponding constant for radial functions. We investigate the asymptotic behavior of the operator norms <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>→</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${{\\\\bf R}_{\\\\mathbb {S}^{d-1}}}(p\\\\rightarrow q)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <msup>\\n <mi>S</mi>\\n <mrow>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>→</mo>\\n <mi>q</mi>\\n <mo>;</mo>\\n <mi>r</mi>\\n <mi>a</mi>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\bf R}_{\\\\mathbb {S}^{d-1}} (p\\\\rightarrow q;\\\\textup {rad})$</annotation>\\n </semantics></math> as the dimension <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> tends to infinity. We further establish a dimension-free endpoint Stein–Tomas inequality for radial functions, together with the corresponding estimate for general functions which we prove with an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>d</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O(d^{1/2})$</annotation>\\n </semantics></math> dependence. Our methods rely on a uniform two-sided refinement of Stempak's asymptotic <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math> estimate of Bessel functions.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2336-2353\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R S d−1 (p→q) ${{\bf R}_{\mathbb{S}^{d-1}}}(p\右箭头q)$表示L p (R d)→L q (S d−1)$ L^p(\mathbb {R}^d)\右移L^q(\mathbb {S}^{d-1})$单位球面的傅里叶限制不等式S d−1 $\mathbb {S}^{d-1}$,令R S d−1 (p→q;rad)$ {\bf r}_{\mathbb {S}^{d-1}} (p\rightarrow q;\textup {rad})$表示径向函数的对应常数。研究了算子范数R S d−1 (p→q)的渐近性。${{\bf R}_{\mathbb {S}^{d-1}}}(p\右箭头q)$和R S d−1 (p→q;​rad)$ {\bf r}_{\mathbb {S}^{d-1}} (p\右箭头q;\textup {rad})$ d$ d$趋于无穷。我们进一步建立了径向函数的无量纲端点Stein-Tomas不等式,我们用O(d 1/2)$ O(d^{1/2})$依赖性证明了一般函数的相应估计。我们的方法依赖于对Bessel函数的Stempak渐近lp $L^p$估计的统一双边细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dimension-free Fourier restriction inequalities

Dimension-free Fourier restriction inequalities

Dimension-free Fourier restriction inequalities

Dimension-free Fourier restriction inequalities

Let R S d 1 ( p q ) ${{\bf R}_{\mathbb {S}^{d-1}}}(p\rightarrow q)$ denote the best constant for the L p ( R d ) L q ( S d 1 ) $L^p(\mathbb {R}^d)\rightarrow L^q(\mathbb {S}^{d-1})$ Fourier restriction inequality to the unit sphere S d 1 $\mathbb {S}^{d-1}$ , and let R S d 1 ( p q ; r a d ) ${\bf R}_{\mathbb {S}^{d-1}} (p\rightarrow q;\textup {rad})$ denote the corresponding constant for radial functions. We investigate the asymptotic behavior of the operator norms R S d 1 ( p q ) ${{\bf R}_{\mathbb {S}^{d-1}}}(p\rightarrow q)$ and R S d 1 ( p q ; r a d ) ${\bf R}_{\mathbb {S}^{d-1}} (p\rightarrow q;\textup {rad})$ as the dimension d $d$ tends to infinity. We further establish a dimension-free endpoint Stein–Tomas inequality for radial functions, together with the corresponding estimate for general functions which we prove with an O ( d 1 / 2 ) $O(d^{1/2})$ dependence. Our methods rely on a uniform two-sided refinement of Stempak's asymptotic L p $L^p$ estimate of Bessel functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信