{"title":"Eigenvalue estimate for the \n \n p\n $p$\n -Laplace operator on a connected finite graph","authors":"Lin Feng Wang","doi":"10.1112/blms.70104","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider eigenvalue estimate for the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplace operator <span></span><math>\n <semantics>\n <msub>\n <mi>▵</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\triangle _p$</annotation>\n </semantics></math> on a connected finite graph with the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CD</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{CD}_p(m,0)$</annotation>\n </semantics></math> condition for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p>1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$m>0$</annotation>\n </semantics></math>. We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of <span></span><math>\n <semantics>\n <msub>\n <mi>▵</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\triangle _p$</annotation>\n </semantics></math>, which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>-Laplace operator <span></span><math>\n <semantics>\n <msub>\n <mi>▵</mi>\n <mi>μ</mi>\n </msub>\n <annotation>$\\triangle _{\\mu }$</annotation>\n </semantics></math> on the graph with the <span></span><math>\n <semantics>\n <mrow>\n <mi>CD</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{CD}(m,0)$</annotation>\n </semantics></math> condition.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2444-2461"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider eigenvalue estimate for the -Laplace operator on a connected finite graph with the condition for and . We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of , which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the -Laplace operator on the graph with the condition.
本文研究了具有CD p (m)的连通有限图上p$ p$ -拉普拉斯算子p_p $\三角形_p$的特征值估计0)$ \ mathm {CD}_p(m,0)$ condition for p >;1$ and m >;0$ m>0$。我们首先建立了特征值方程解的椭圆梯度估计。然后,我们建立了第一个非零特征值的下界估计,该估计不仅是流形设定的特征值估计的推广,也讨论了μ $\mu$ -拉普拉斯算子在具有CD (m,0)$ \mathrm{CD}(m,0)$条件的图上的μ $\triangle _{\mu}$的特征值估计。