{"title":"无穷型点上Bergman度规的渐近行为","authors":"Ravi Shankar Jaiswal","doi":"10.1112/blms.70100","DOIUrl":null,"url":null,"abstract":"<p>We investigate nontangential asymptotic limits of the Bergman kernel on the diagonal, and the Bergman metric and its holomorphic sectional curvature at exponentially flat infinite-type boundary points of smooth bounded pseudoconvex domains in <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$\\mathbb {C}^{n + 1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$n \\in \\mathbb {N}$</annotation>\n </semantics></math>. After showing that these objects satisfy the appropriate localizations, we apply the method of scaling to prove our results.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2372-2394"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Behavior of the Bergman Metric at Infinite Type Points\",\"authors\":\"Ravi Shankar Jaiswal\",\"doi\":\"10.1112/blms.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate nontangential asymptotic limits of the Bergman kernel on the diagonal, and the Bergman metric and its holomorphic sectional curvature at exponentially flat infinite-type boundary points of smooth bounded pseudoconvex domains in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {C}^{n + 1}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$n \\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math>. After showing that these objects satisfy the appropriate localizations, we apply the method of scaling to prove our results.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2372-2394\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70100\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic Behavior of the Bergman Metric at Infinite Type Points
We investigate nontangential asymptotic limits of the Bergman kernel on the diagonal, and the Bergman metric and its holomorphic sectional curvature at exponentially flat infinite-type boundary points of smooth bounded pseudoconvex domains in , . After showing that these objects satisfy the appropriate localizations, we apply the method of scaling to prove our results.