论马丁关于平均和短字符和的猜想

IF 0.9 3区 数学 Q2 MATHEMATICS
Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen
{"title":"论马丁关于平均和短字符和的猜想","authors":"Oleksiy Klurman,&nbsp;Igor E. Shparlinski,&nbsp;Joni Teräväinen","doi":"10.1112/blms.70103","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> denote the number of primes up to <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> for which the integer <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> is a primitive root. We show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> satisfies the asymptotic predicted by Artin's conjecture for almost all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>a</mi>\n <mo>⩽</mo>\n <mi>exp</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$1\\leqslant a\\leqslant \\exp ((\\log \\log x)^2)$</annotation>\n </semantics></math>. This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2429-2443"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70103","citationCount":"0","resultStr":"{\"title\":\"On Artin's conjecture on average and short character sums\",\"authors\":\"Oleksiy Klurman,&nbsp;Igor E. Shparlinski,&nbsp;Joni Teräväinen\",\"doi\":\"10.1112/blms.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>a</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_a(x)$</annotation>\\n </semantics></math> denote the number of primes up to <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> for which the integer <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$a$</annotation>\\n </semantics></math> is a primitive root. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>a</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_a(x)$</annotation>\\n </semantics></math> satisfies the asymptotic predicted by Artin's conjecture for almost all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>a</mi>\\n <mo>⩽</mo>\\n <mi>exp</mi>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>log</mi>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1\\\\leqslant a\\\\leqslant \\\\exp ((\\\\log \\\\log x)^2)$</annotation>\\n </semantics></math>. This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2429-2443\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设N a (x) $N_a(x)$表示x以下质数的个数$x$其中整数a$a$是一个原始根。我们证明了na (x) $N_a(x)$对于几乎所有的1≤a都满足由Artin猜想预测的渐近≤exp ((log log x) 2) $1\leqslant a\leqslant \exp ((\log \log x)^2)$。这改进了Stephens(1969)的结果。证明中的一个关键因素是一个新的整数短字符和估计,改进了Garaev(2006)的结果的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Artin's conjecture on average and short character sums

On Artin's conjecture on average and short character sums

On Artin's conjecture on average and short character sums

On Artin's conjecture on average and short character sums

Let N a ( x ) $N_a(x)$ denote the number of primes up to x $x$ for which the integer a $a$ is a primitive root. We show that N a ( x ) $N_a(x)$ satisfies the asymptotic predicted by Artin's conjecture for almost all 1 a exp ( ( log log x ) 2 ) $1\leqslant a\leqslant \exp ((\log \log x)^2)$ . This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信