Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen
{"title":"论马丁关于平均和短字符和的猜想","authors":"Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen","doi":"10.1112/blms.70103","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> denote the number of primes up to <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> for which the integer <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> is a primitive root. We show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> satisfies the asymptotic predicted by Artin's conjecture for almost all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>a</mi>\n <mo>⩽</mo>\n <mi>exp</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$1\\leqslant a\\leqslant \\exp ((\\log \\log x)^2)$</annotation>\n </semantics></math>. This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2429-2443"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70103","citationCount":"0","resultStr":"{\"title\":\"On Artin's conjecture on average and short character sums\",\"authors\":\"Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen\",\"doi\":\"10.1112/blms.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>a</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_a(x)$</annotation>\\n </semantics></math> denote the number of primes up to <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> for which the integer <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$a$</annotation>\\n </semantics></math> is a primitive root. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mi>a</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_a(x)$</annotation>\\n </semantics></math> satisfies the asymptotic predicted by Artin's conjecture for almost all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>a</mi>\\n <mo>⩽</mo>\\n <mi>exp</mi>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>log</mi>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1\\\\leqslant a\\\\leqslant \\\\exp ((\\\\log \\\\log x)^2)$</annotation>\\n </semantics></math>. This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2429-2443\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Artin's conjecture on average and short character sums
Let denote the number of primes up to for which the integer is a primitive root. We show that satisfies the asymptotic predicted by Artin's conjecture for almost all . This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).