{"title":"Dimension-free Fourier restriction inequalities","authors":"Diogo Oliveira e Silva, Błażej Wróbel","doi":"10.1112/blms.70098","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{\\bf R}_{\\mathbb {S}^{d-1}}}(p\\rightarrow q)$</annotation>\n </semantics></math> denote the best constant for the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(\\mathbb {R}^d)\\rightarrow L^q(\\mathbb {S}^{d-1})$</annotation>\n </semantics></math> Fourier restriction inequality to the unit sphere <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$\\mathbb {S}^{d-1}$</annotation>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>;</mo>\n <mi>r</mi>\n <mi>a</mi>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf R}_{\\mathbb {S}^{d-1}} (p\\rightarrow q;\\textup {rad})$</annotation>\n </semantics></math> denote the corresponding constant for radial functions. We investigate the asymptotic behavior of the operator norms <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{\\bf R}_{\\mathbb {S}^{d-1}}}(p\\rightarrow q)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>→</mo>\n <mi>q</mi>\n <mo>;</mo>\n <mi>r</mi>\n <mi>a</mi>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf R}_{\\mathbb {S}^{d-1}} (p\\rightarrow q;\\textup {rad})$</annotation>\n </semantics></math> as the dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> tends to infinity. We further establish a dimension-free endpoint Stein–Tomas inequality for radial functions, together with the corresponding estimate for general functions which we prove with an <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>d</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(d^{1/2})$</annotation>\n </semantics></math> dependence. Our methods rely on a uniform two-sided refinement of Stempak's asymptotic <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> estimate of Bessel functions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2336-2353"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the best constant for the Fourier restriction inequality to the unit sphere , and let denote the corresponding constant for radial functions. We investigate the asymptotic behavior of the operator norms and as the dimension tends to infinity. We further establish a dimension-free endpoint Stein–Tomas inequality for radial functions, together with the corresponding estimate for general functions which we prove with an dependence. Our methods rely on a uniform two-sided refinement of Stempak's asymptotic estimate of Bessel functions.